We evaluated the biomechanical properties of two different methods of fixation for unstable fractures of the proximal humerus. Biomechanical testing of the two groups, locking plate alone (LP), and locking plate with a fibular strut graft (LPSG), was performed using seven pairs of human cadaveric humeri. Cyclical loads between 10 N and 80 N at 5 Hz were applied for 1 000 000 cycles. Immediately after cycling, an increasing axial load was applied at a rate of displacement of 5 mm/min. The displacement of the construct, maximum failure load, stiffness and mode of failure were compared. The displacement was significantly less in the LPSG group than in the LP group (p = 0.031). All maximum failure loads and measures of stiffness in the LPSG group were significantly higher than those in the LP group (p = 0.024 and p = 0.035, respectively). In the LP group, varus collapse and plate bending were seen. In the LPSG group, the humeral head cut out and the fibular strut grafts fractured. No broken plates or screws were seen in either group. We conclude that strut graft augmentation significantly increases both the maximum failure load and the initial stiffness of this construct compared with a locking plate alone.
The purpose of this study was to evaluate the
risk of late displacement after the treatment of distal radial fractures with
a locking volar plate, and to investigate the clinical and radiological
factors that might correlate with re-displacement. From March 2007
to October 2009, 120 of an original cohort of 132 female patients
with unstable fractures of the distal radius were treated with a
volar locking plate, and were studied over a follow-up period of
six months. In the immediate post-operative and final follow-up
radiographs, late displacement was evaluated as judged by ulnar
variance, radial inclination, and dorsal angulation. We also analysed
the correlation of a variety of clinical and radiological factors
with re-displacement. Ulnar variance was significantly overcorrected
(p <
0.001) while radial inclination and dorsal angulation were
undercorrected when compared statistically (p <
0.001) with the unaffected
side in the immediate post-operative stage. During follow-up, radial
shortening and dorsal angulation progressed statistically, but none
had a value beyond the acceptable range. Bone mineral density measured
at the proximal femur and the position of the screws in the subchondral
region, correlated with slight progressive radial shortening, which
was not clinically relevant. Volar locking plating of distal radial fractures is a reliable
form of treatment without substantial late displacement. Cite this article:
The use of volar locking compression plates for the treatment of fractures of the distal radius is becoming increasingly popular because of the stable biomechanical construct, less soft-tissue disturbance and early mobilisation of the wrist. A few studies have reported complications such as rupture of flexor tendons. We describe three cases of rupture of extensor tendons after the use of volar locking compression plates. We recommend extreme care when drilling and placing the distal radial screws to prevent damaging the extensor tendons.