Hyaline articular cartilage has been known to
be a troublesome tissue to repair once damaged. Since the introduction
of autologous chondrocyte implantation (ACI) in 1994, a renewed
interest in the field of cartilage repair with new repair techniques
and the hope for products that are regenerative have blossomed.
This article reviews the basic science structure and function of
articular cartilage, and techniques that are presently available
to effect repair and their expected outcomes.
Ten patients, who were unsuitable for limb lengthening over an intramedullary nail, underwent lengthening with a submuscular locking plate. Their mean age at operation was 18.5 years (11 to 40). After fixing a locking plate submuscularly on the proximal segment, an external fixator was applied to lengthen the bone after corticotomy. Lengthening was at 1 mm/day and on reaching the target length, three or four screws were placed in the plate in the distal segment and the external fixator was removed. All patients achieved the pre-operative target length at a mean of 4.0 cm (3.2 to 5.5). The mean duration of external fixation was 61.6 days (45 to 113) and the mean external fixation index was 15.1 days/cm (13.2 to 20.5), which was less than one-third of the mean healing index (48 days/cm (41.3 to 55). There were only minor complications. Lengthening with a submuscular locking plate can successfully permit early removal of the fixator with fewer complications and is a useful alternative in children or when nailing is difficult.
Femoral lengthening using the Intramedullary Skeletal Kinetic Distractor is a new technique. However, with intramedullary distraction the surgeon has less control over the lengthening process. Therefore, 33 femora lengthened with this device were assessed to evaluate the effect of operative variables under the surgeon’s control on the course of lengthening. The desired lengthening was achieved in 32 of 33 limbs. Problems encountered included difficulty in achieving length in eight femora (24%) and uncontrolled lengthening in seven (21%). Uncontrolled lengthening was more likely if the osteotomy was placed with less than 80 mm of the thick portion of the nail in the distal fragment (p = 0.052), and a failure to lengthen was more likely if there was over 125 mm in the distal fragment (p = 0.008). The latter problem was reduced with over-reaming by 2.5 mm to 3 mm. Previous intramedullary nailing also predisposed to uncontrolled lengthening (p = 0.042), and these patients required less reaming. Using the Intramedullary Skeletal Kinetic Distractor, good outcomes were obtained; problems were minimised by optimising the position of the osteotomy and the amount of over-reaming performed.