A three-dimensional computer model of a total hip replacement was used to examine the relationship between the position of the components, the range of motion and the prosthetic joint contact area. Horizontal acetabular positions with small amounts of acetabular and femoral anteversion provide the largest contact areas, but result in limited joint movement. These data will allow surgeons to select
The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs. The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone.
Different calcaneal plates with locked screws were compared in an experimental model of a calcaneal fracture. Four plate models were tested, three with uniaxially-locked screws (Synthes, Newdeal, Darco), and one with polyaxially-locked screws (90° ± 15°) (Rimbus). Synthetic calcanei were osteotomised to create a fracture model and then fixed with the plates and screws. Seven specimens for each plate model were subjected to cyclic loading (preload 20 N, 1000 cycles at 800 N, 0.75 mm/s), and load to failure (0.75 mm/s). During cyclic loading, the plate with polyaxially-locked screws (Rimbus) showed significantly lower displacement in the primary loading direction than the plates with uniaxially-locked screws (mean values of maximum displacement during cyclic loading: Rimbus, 3.13 mm ( The increased stability of a plate with polyaxially-locked screws demonstrated during cyclic loading compared with plates with uniaxially-locked screws may be beneficial for clinical use.