Advertisement for orthosearch.org.uk
Results 1 - 20 of 154
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 439 - 442
1 Apr 2011
Sexton SA Yeung E Jackson MP Rajaratnam S Martell JM Walter WL Zicat BA Walter WK

We investigated factors that were thought to be associated with an increased incidence of squeaking of ceramic-on-ceramic total hip replacements. Between June 1997 and December 2008 the three senior authors implanted 2406 primary total hip replacements with a ceramic-on-ceramic bearing surface. The mean follow-up was 10.6 years. The diagnosis was primary osteoarthritis in each case, and no patient had undergone previous surgery to the hip. We identified 74 squeaking hips (73 patients) giving an incidence of 3.1% at a mean follow-up of 9.5 years (4.1 to 13.3). Taller, heavier and younger patients were significantly more likely to have hips that squeaked. Squeaking hips had a significantly higher range of post-operative internal (p = 0.001) and external rotation (p = 0.003) compared with silent hips. Patients with squeaking hips had significantly higher activity levels (p = 0.009). A squeaking hip was not associated with a significant difference in patient satisfaction (p = 0.24) or Harris hip score (p = 0.34). Four implant position factors enabled good prediction of squeaking. These were high acetabular component inclination, high femoral offset, lateralisation of the hip centre and either high or low acetabular component anteversion. This is the largest study to date to examine patient factors and implant position factors that predispose to squeaking of a ceramic-on-ceramic hip. The results suggest that factors which increase the mechanical forces across the hip joint and factors which increase the risk of neck-to-rim impingement, and therefore edge-loading, are those that predispose to squeaking


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims

The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA).

Patients and Methods

A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (sd 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 541 - 548
1 May 2022
Zhang J Ng N Scott CEH Blyth MJG Haddad FS Macpherson GJ Patton JT Clement ND

Aims. This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA). Methods. Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-­Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis. Results. A total of 179 articles were identified from initial screening, of which 14 articles satisfied the inclusion criteria and were included for analysis. The papers analyzed include one on learning curve, five on implant positioning, six on functional outcomes, five on complications, six on survivorship, and three on cost. The learning curve was six cases for operating time and zero for precision. There was consistent evidence of more precise implant positioning with MAKO RAUKA. Meta-analysis demonstrated lower overall complication rates associated with MAKO RAUKA (OR 2.18 (95% confidence interval (CI) 1.06 to 4.49); p = 0.040) but no difference in re-intervention, infection, Knee Society Score (KSS; mean difference 1.64 (95% CI -3.00 to 6.27); p = 0.490), or Western Ontario and McMaster Universities Arthritis Index (WOMAC) score (mean difference -0.58 (95% CI -3.55 to 2.38); p = 0.700). MAKO RAUKA was shown to be a cost-effective procedure, but this was directly related to volume. Conclusion. MAKO RAUKA was associated with improved precision of component positioning but was not associated with improved PROMs using the KSS and WOMAC scores. Future longer-term studies should report functional outcomes, potentially using scores with minimal ceiling effects and survival to assess whether the improved precision of MAKO RAUKA results in better outcomes. Cite this article: Bone Joint J 2022;104-B(5):541–548


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving anatomical reconstruction. Accuracy of achieved placement contributed to reduced complications with no injury to vital structures by screw fixation. Cite this article: Bone Joint J 2022;104-B(10):1110–1117


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 838 - 847
1 Jul 2019
Robinson PG Clement ND Hamilton D Blyth MJG Haddad FS Patton JT

Aims. Robotic-assisted unicompartmental knee arthroplasty (UKA) promises accurate implant placement with the potential of improved survival and functional outcomes. The aim of this study was to present the current evidence for robotic-assisted UKA and describe the outcome in terms of implant positioning, range of movement (ROM), function and survival, and the types of robot and implants that are currently used. Materials and Methods. A search of PubMed and Medline was performed in October 2018 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “knee”, and “surgery”. The criteria for inclusion was any study describing the use of robotic UKA and reporting implant positioning, ROM, function, and survival for clinical, cadaveric, or dry bone studies. Results. A total of 528 articles were initially identified from the databases and reference lists. Following full text screening, 38 studies that satisfied the inclusion criteria were included. In all, 20 studies reported on implant positioning, 18 on functional outcomes, 16 on survivorship, and six on ROM. The Mako (Stryker, Mahwah, New Jersey) robot was used in 32 studies (84%), the BlueBelt Navio (Blue Belt Technologies, Plymouth, Minnesota) in three (8%), the Sculptor RGA (Stanmore Implants, Borehamwood United Kingdom) in two (5%), and the Acrobot (The Acrobot Co. Ltd., London, United Kingdom) in one study (3%). The most commonly used implant was the Restoris MCK (Stryker). Nine studies (24%) did not report the implant that was used. The pooled survivorship at six years follow-up was 96%. However, when assessing survival according to implant design, survivorship of an inlay (all-polyethylene) tibial implant was 89%, whereas that of an onlay (metal-backed) implant was 97% at six years (odds ratio 3.66, 95% confidence interval 20.7 to 6.46, p < 0.001). Conclusion. There is little description of the choice of implant when reporting robotic-assisted UKA, which is essential when assessing survivorship, in the literature. Implant positioning with robotic-assisted UKA is more accurate and more reproducible than that performed manually and may offer better functional outcomes, but whether this translates into improved implant survival in the mid- to longer-term remains to be seen. Cite this article: Bone Joint J 2019;101-B:838–847


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 321 - 328
1 Feb 2021
Vandeputte F Vanbiervliet J Sarac C Driesen R Corten K

Aims. Optimal exposure through the direct anterior approach (DAA) for total hip arthroplasty (THA) conducted on a regular operating theatre table is achieved with a standardized capsular releasing sequence in which the anterior capsule can be preserved or resected. We hypothesized that clinical outcomes and implant positioning would not be different in case a capsular sparing (CS) technique would be compared to capsular resection (CR). Methods. In this prospective trial, 219 hips in 190 patients were randomized to either the CS (n = 104) or CR (n = 115) cohort. In the CS cohort, a medial based anterior flap was created and sutured back in place at the end of the procedure. The anterior capsule was resected in the CR cohort. Primary outcome was defined as the difference in patient-reported outcome measures (PROMs) after one year. PROMs (Harris Hip Score (HHS), Hip disability and Osteoarthritis Outcome Score (HOOS), and Short Form 36 Item Health Survey (SF-36)) were collected preoperatively and one year postoperatively. Radiological parameters were analyzed to assess implant positioning and implant ingrowth. Adverse events were monitored. Results. At one year, there was no difference in HSS (p = 0.728), HOOS (Activity Daily Life, p = 0.347; Pain, p = 0.982; Quality of Life, p = 0.653; Sport, p = 0.994; Symptom, p = 0.459), or SF-36 (p = 0.338). Acetabular component inclination (p = 0.276) and anteversion (p = 0.392) as well as femoral component alignment (p = 0.351) were similar in both groups. There were no dislocations, readmissions, or reoperations in either group. The incidence of psoas tendinitis was six cases in the CS cohort (6%) and six cases in the CR cohort (5%) (p = 0.631). Conclusion. No clinical differences were found between resection or preservation of the anterior capsule when performing a primary THA through the DAA on a regular theatre table. In case of limited visibility during the learning curve, it might be advisable to resect a part of the anterior capsule. Cite this article: Bone Joint J 2021;103-B(2):321–328


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 895 - 904
1 Aug 2023
Smith TO Dainty J Loveday DT Toms A Goldberg AJ Watts L Pennington MW Dawson J van der Meulen J MacGregor AJ

Aims. The aim of this study was to capture 12-month outcomes from a representative multicentre cohort of patients undergoing total ankle arthroplasty (TAA), describe the pattern of patient-reported outcome measures (PROMs) at 12 months, and identify predictors of these outcome measures. Methods. Patients listed for a primary TAA at 19 NHS hospitals between February 2016 and October 2017 were eligible. PROMs data were collected preoperatively and at six and 12 months including: Manchester-Oxford Foot and Ankle Questionnaire (MOXFQ (foot and ankle)) and the EuroQol five-dimension five-level questionnaire (EQ-5D-5L). Radiological pre- and postoperative data included Kellgren-Lawrence score and implant position measurement. This was supplemented by data from the National Joint Registry through record linkage to determine: American Society of Anesthesiologists (ASA) grade at index procedure; indication for surgery, index ankle previous fracture; tibial hind foot alignment; additional surgery at the time of TAA; and implant type. Multivariate regression models assessed outcomes, and the relationship between MOXFQ and EQ-5D-5L outcomes, with patient characteristics. Results. Data from 238 patients were analyzed. There were significant improvements in MOXFQ and EQ-5D-5L among people who underwent TAA at six- and 12-month assessments compared with preoperative scores (p < 0.001). Most improvement occurred between preoperative and six months, with little further improvement at 12 months. A greater improvement in MOXFQ outcome postoperatively was associated with older age and more advanced radiological signs of ankle osteoarthritis at baseline. Conclusion. TAA significantly benefits patients with end-stage ankle disease. The lack of substantial further overall change between six and 12 months suggests that capturing PROMs at six months is sufficient to assess the success of the procedure. Older patients and those with advanced radiological disease had the greater gains. These outcome predictors can be used to counsel younger patients and those with earlier ankle disease on the expectations of TAA. Cite this article: Bone Joint J 2023;105-B(8):895–904


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1033 - 1042
1 Aug 2018
Kayani B Konan S Pietrzak JRT Huq SS Tahmassebi J Haddad FS

Aims. The primary aim of this study was to determine the surgical team’s learning curve for introducing robotic-arm assisted unicompartmental knee arthroplasty (UKA) into routine surgical practice. The secondary objective was to compare accuracy of implant positioning in conventional jig-based UKA versus robotic-arm assisted UKA. Patients and Methods. This prospective single-surgeon cohort study included 60 consecutive conventional jig-based UKAs compared with 60 consecutive robotic-arm assisted UKAs for medial compartment knee osteoarthritis. Patients undergoing conventional UKA and robotic-arm assisted UKA were well-matched for baseline characteristics including a mean age of 65.5 years (. sd. 6.8) vs 64.1 years (. sd. 8.7), (p = 0.31); a mean body mass index of 27.2 kg.m2 (. sd. 2.7) vs 28.1 kg.m2 (. sd. 4.5), (p = 0.25); and gender (27 males: 33 females vs 26 males: 34 females, p = 0.85). Surrogate measures of the learning curve were prospectively collected. These included operative times, the Spielberger State-Trait Anxiety Inventory (STAI) questionnaire to assess preoperative stress levels amongst the surgical team, accuracy of implant positioning, limb alignment, and postoperative complications. Results. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time (p < 0.001) and surgical team confidence levels (p < 0.001). Cumulative robotic experience did not affect accuracy of implant positioning (p = 0.52), posterior condylar offset ratio (p = 0.71), posterior tibial slope (p = 0.68), native joint line preservation (p = 0.55), and postoperative limb alignment (p = 0.65). Robotic-arm assisted UKA improved accuracy of femoral (p < 0.001) and tibial (p < 0.001) implant positioning with no additional risk of postoperative complications compared to conventional jig-based UKA. Conclusion. Robotic-arm assisted UKA was associated with a learning curve of six cases for operating time and surgical team confidence levels but no learning curve for accuracy of implant positioning. Cite this article: Bone Joint J 2018;100-B:1033–42


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 929 - 937
1 Aug 2022
Gurung B Liu P Harris PDR Sagi A Field RE Sochart DH Tucker K Asopa V

Aims. Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are. Methods. The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy. Results. Of the 455 studies identified, only 12 were suitable for inclusion. Nine reported implant identification and three described predicting risk of implant failure. Of the 12, three studies compared AI performance with orthopaedic surgeons. AI-based implant identification achieved AUC 0.992 to 1, and most algorithms reported an accuracy > 90%, using 550 to 320,000 training radiographs. AI prediction of dislocation risk post-THA, determined after five-year follow-up, was satisfactory (AUC 76.67; 8,500 training radiographs). Diagnosis of hip implant loosening was good (accuracy 88.3%; 420 training radiographs) and measurement of postoperative acetabular angles was comparable to humans (mean absolute difference 1.35° to 1.39°). However, 11 of the 12 studies had several methodological limitations introducing a high risk of bias. None of the studies were externally validated. Conclusion. These studies show that AI is promising. While it already has the ability to analyze images with significant precision, there is currently insufficient high-level evidence to support its widespread clinical use. Further research to design robust studies that follow standard reporting guidelines should be encouraged to develop AI models that could be easily translated into real-world conditions. Cite this article: Bone Joint J 2022;104-B(8):929–937


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1009 - 1020
1 Jun 2021
Ng N Gaston P Simpson PM Macpherson GJ Patton JT Clement ND

Aims. The aims of this systematic review were to assess the learning curve of semi-active robotic arm-assisted total hip arthroplasty (rTHA), and to compare the accuracy, patient-reported functional outcomes, complications, and survivorship between rTHA and manual total hip arthroplasty (mTHA). Methods. Searches of PubMed, Medline, and Google Scholar were performed in April 2020 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “hip”, and “arthroplasty”. The criteria for inclusion were published clinical research articles reporting the learning curve for rTHA (robotic arm-assisted only) and those comparing the implantation accuracy, functional outcomes, survivorship, or complications with mTHA. Results. There were 501 articles initially identified from databases and references. Following full text screening, 17 articles that satisfied the inclusion criteria were included. Four studies reported the learning curve of rTHA, 13 studies reported on implant positioning, five on functional outcomes, ten on complications, and four on survivorship. The meta-analysis showed a significantly greater number of cases of acetabular component placement in the safe zone compared with the mTHA group (95% confidence interval (CI) 4.10 to 7.94; p < 0.001) and that rTHA resulted in a significantly better Harris Hip Score compared to mTHA in the short- to mid-term follow-up (95% CI 0.46 to 5.64; p = 0.020). However, there was no difference in infection rates, dislocation rates, overall complication rates, and survival rates at short-term follow-up. Conclusion. The learning curve of rTHA was between 12 and 35 cases, which was dependent on the assessment goal, such as operating time, accuracy, and team working. Robotic arm-assisted total hip arthroplasty was associated with improved accuracy of component positioning and functional outcome, however no difference in complication rates or survival were observed at short- to mid-term follow-up. Overall, there remains an absence of high-quality level I evidence and cost analysis comparing rTHA and mTHA. Cite this article: Bone Joint J 2021;103-B(6):1009–1020


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 407 - 413
1 Apr 2020
Vermue H Lambrechts J Tampere T Arnout N Auvinet E Victor J

The application of robotics in the operating theatre for knee arthroplasty remains controversial. As with all new technology, the introduction of new systems might be associated with a learning curve. However, guidelines on how to assess the introduction of robotics in the operating theatre are lacking. This systematic review aims to evaluate the current evidence on the learning curve of robot-assisted knee arthroplasty. An extensive literature search of PubMed, Medline, Embase, Web of Science, and Cochrane Library was conducted. Randomized controlled trials, comparative studies, and cohort studies were included. Outcomes assessed included: time required for surgery, stress levels of the surgical team, complications in regard to surgical experience level or time needed for surgery, size prediction of preoperative templating, and alignment according to the number of knee arthroplasties performed. A total of 11 studies met the inclusion criteria. Most were of medium to low quality. The operating time of robot-assisted total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) is associated with a learning curve of between six to 20 cases and six to 36 cases respectively. Surgical team stress levels show a learning curve of seven cases in TKA and six cases for UKA. Experience with the robotic systems did not influence implant positioning, preoperative planning, and postoperative complications. Robot-assisted TKA and UKA is associated with a learning curve regarding operating time and surgical team stress levels. Future evaluation of robotics in the operating theatre should include detailed measurement of the various aspects of the total operating time, including total robotic time and time needed for preoperative planning. The prior experience of the surgical team should also be evaluated and reported. Cite this article: Bone Joint J 2020;102-B(4):407–413


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims

Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up.

Methods

This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims

Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods.

Methods

In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims

The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different.

Methods

A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 97 - 103
1 Mar 2024
Baujard A Martinot P Demondion X Dartus J Faure PA Girard J Migaud H

Aims

Mechanical impingement of the iliopsoas (IP) tendon accounts for 2% to 6% of persistent postoperative pain after total hip arthroplasty (THA). The most common initiator is anterior acetabular component protrusion, where the anterior margin is not covered by anterior acetabular wall. A CT scan can be used to identify and measure this overhang; however, no threshold exists for determining symptomatic anterior IP impingement due to overhang. A case-control study was conducted in which CT scan measurements were used to define a threshold that differentiates patients with IP impingement from asymptomatic patients after THA.

Methods

We analyzed the CT scans of 622 patients (758 THAs) between May 2011 and May 2020. From this population, we identified 136 patients with symptoms suggestive of IP impingement. Among them, six were subsequently excluded: three because the diagnosis was refuted intraoperatively, and three because they had another obvious cause of impingement, leaving 130 hips (130 patients) in the study (impingement) group. They were matched to a control group of 138 asymptomatic hips (138 patients) after THA. The anterior acetabular component overhang was measured on an axial CT slice based on anatomical landmarks (orthogonal to the pelvic axis).


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims

The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system.

Methods

The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.


Aims

Total knee arthroplasty (TKA) may provoke ankle symptoms. The aim of this study was to validate the impact of the preoperative mechanical tibiofemoral angle (mTFA), the talar tilt (TT) on ankle symptoms after TKA, and assess changes in the range of motion (ROM) of the subtalar joint, foot posture, and ankle laxity.

Methods

Patients who underwent TKA from September 2020 to September 2021 were prospectively included. Inclusion criteria were primary end-stage osteoarthritis (Kellgren-Lawrence stage IV) of the knee. Exclusion criteria were missed follow-up visit, post-traumatic pathologies of the foot, and neurological disorders. Radiological angles measured included the mTFA, hindfoot alignment view angle, and TT. The Foot Function Index (FFI) score was assessed. Gait analyses were conducted to measure mediolateral changes of the gait line and ankle laxity was tested using an ankle arthrometer. All parameters were acquired one week pre- and three months postoperatively.