Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1077 - 1082
1 Sep 2000
Shimazaki A Inui K Azuma Y Nishimura N Yamano Y

We investigated the effects of low-intensity pulsed ultrasound on distraction osteogenesis in a rabbit model. Callotasis of the right tibia was performed in 70 male Japanese white rabbits using mini-external fixators. In the first part of the study in 64 animals using normal distraction (waiting period seven days; distraction rate 0.5 mm/12 hours; distraction period ten days), we evaluated the distraction site by radiography, measurement of the bone mineral density (BMD), mechanical testing, and histology. In the second part in six rabbits using fast distraction (waiting period 0 days; distraction rate 1.5 mm/12 hours; distraction period seven days) the site was evaluated radiologically. Half of the animals (35) had received ultrasound to their right leg (30mW/cm. 2. ) for 20 minutes daily after ceasing distraction (ultrasound group), while rigid fixation only was maintained in the other half (control group). With normal distraction, the hard callus area, as shown by radiography, the BMD, and the findings on mechanical testing, were significantly greater in those receiving ultrasound than in the control group. Histological analysis showed no tissue damage attributable to exposure to ultrasound. With fast distraction, immature bone regeneration was observed radiologically in the control group, while bone maturation was achieved in the ultrasound group. We conclude that ultrasound can accelerate bone maturation in distraction osteogenesis in rabbits, even in states of poor callotasis


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology. Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 130 - 134
1 Jan 1999
Alfaro-Adrián J Gill HS Murray DW

Studies using roentgen stereophotogrammetric analysis (RSA) have shown that the femoral components of cemented total hip replacements (THR) migrate distally relative to the bone, but it is not clear whether this occurs at the cement-implant or the cement-bone interface or within the cement mantle. Our aim was to determine where this migration occurred, since this has important implications for the way in which implants function and fail. Using RSA we compared for two years the migration of the tip of the stem with that of the cement restrictor for two different designs of THR, the Exeter and Charnley Elite. We have assumed that if the cement restrictor migrates, then at least part of the cement mantle also migrates. Our results have shown that the Exeter migrates distally three times faster than the Charnley Elite and at different interfaces. With the Exeter migration was at the cement-implant interface whereas with the Charnley Elite there was migration at both the cement-bone and the cement-implant interfaces


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 752 - 758
1 Jul 2004
Pötzl W Kümpers P Szuwart T Götze G Marquardt B Steinbeck J

Despite widespread use of radiofrequency (RF) shrinkage, there have been no animal studies on the effects of post-operative immobilisation on the histological properties of the shrunken tissue. We have therefore examined the role of post-operative immobilisation after RF shrinkage with special emphasis on the histological properties of collagenous tissue. One patellar tendon of 66 New Zealand White rabbits was shrunk. Six rabbits were killed immediately after the operation. Twenty rabbits were not immobilised, 20 were immobilised for three weeks and 20 for six weeks. Fibroblasts, collagen and vascular quality and density were evaluated on sections, stained by haematoxylin and eosin. Nine weeks after operation the histological properties were inferior to those of the contralateral control tendons. Shrunk tendons did not return to normal at any time after operation irrespective of whether the animals had been immobilised or not. All the parameters improved significantly between zero and three weeks after operation. Immobilised tendons tended to have a better and faster recovery. Careful rehabilitation is imperative after RF shrinkage. Immobilisation aids recovery of the histological properties. Our findings in this animal model support a period of immobilisation of more than three weeks


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions.

A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed.

The mean angulation achieved at three weeks was 34.7° (standard deviation (sd) 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (sd 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established.

In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear.

Cite this article: Bone Joint J 2015;97-B:862–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined.

The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination.

Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 998 - 1006
1 Jul 2012
Kodama A Kamei N Kamei G Kongcharoensombat W Ohkawa S Nakabayashi A Ochi M

For the treatment of ununited fractures, we developed a system of delivering magnetic labelled mesenchymal stromal cells (MSCs) using an extracorporeal magnetic device. In this study, we transplanted ferucarbotran-labelled and luciferase-positive bone marrow-derived MSCs into a non-healing femoral fracture rat model in the presence of a magnetic field. The biological fate of the transplanted MSCs was observed using luciferase-based bioluminescence imaging and we found that the number of MSC derived photons increased from day one to day three and thereafter decreased over time. The magnetic cell delivery system induced the accumulation of photons at the fracture site, while also retaining higher photon intensity from day three to week four. Furthermore, radiological and histological findings suggested improved callus formation and endochondral ossification. We therefore believe that this delivery system may be a promising option for bone regeneration.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1614 - 1620
1 Nov 2010
Fini M Tschon M Ronchetti M Cavani F Bianchi G Mercuri M Alberghini M Cadossi R

Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells.

Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing.

After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times.

Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study.

The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles.

There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants.

Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 814 - 820
1 Jun 2008
Chu CR Izzo NJ Coyle CH Papas NE Logar A

We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal microscopy of human articular chondrocytes showed > 95% cellular death after exposure to 0.5% bupivacaine for 30 minutes. Human and bovine chondrocytes exposed to 0.25% bupivacaine had a time-dependent reduction in viability, with longer exposure times resulting in higher cytotoxicity. Cellular death continued even after removal of 0.25% bupivacaine. After exposure to 0.25% bupivacaine for 15 minutes, flow cytometry showed bovine chondrocyte viability to be 41% of saline control after seven days. After exposure to 0.125% bupivacaine for up to 60 minutes, the viability of both bovine and human chondrocytes was similar to that of control groups.

These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1106 - 1109
1 Aug 2009
Branstetter JG Jackson SR Haggard WO Richelsoph KC Wenke JC

We used a goat model of a contaminated musculoskeletal defect to determine the effectiveness of rapidly-resorbing calcium-sulphate pellets containing amikacin to reduce the local bacterial count. Our findings showed that this treatment eradicated the bacteria quickly, performed as well as standard polymethylmethacrylate mixed with an antibiotic and had many advantages over the latter. The pellets were prepared before surgery and absorbed completely. They released all of the antibiotic and did not require a subsequent operation for their removal. Our study indicated that locally administered antibiotics reduced bacteria within the wound rapidly. This method of treatment may have an important role in decreasing the rate of infection in contaminated wounds.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 123 - 128
1 Jan 2006
Fini M Giavaresi G Giardino R Cavani F Cadossi R

We investigated the effect of stimulation with a pulsed electromagnetic field on the osseointegration of hydroxyapatite in cortical bone in rabbits. Implants were inserted into femoral cortical bone and were stimulated for six hours per day for three weeks.

Electromagnetic stimulation improved osseointegration of hydroxyapatite compared with animals which did not receive this treatment in terms of direct contact with the bone, the maturity of the bone and mechanical fixation. The highest values of maximum push-out force (Fmax) and ultimate shear strength (σu) were observed in the treated group and differed significantly from those of the control group at three weeks (Fmax; p < 0.0001; σu, p < 0.0005).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 848 - 855
1 Jun 2012
Tayton ER Smith JO Aarvold A Kalra S Dunlop DG Oreffo ROC

When transferring tissue regenerative strategies involving skeletal stem cells to human application, consideration needs to be given to factors that may affect the function of the cells that are transferred. Local anaesthetics are frequently used during surgical procedures, either administered directly into the operative site or infiltrated subcutaneously around the wound. The aim of this study was to investigate the effects of commonly used local anaesthetics on the morphology, function and survival of human adult skeletal stem cells.

Cells from three patients who were undergoing elective hip replacement were harvested and incubated for two hours with 1% lidocaine, 0.5% levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability was quantified using WST-1 and DNA assays. Viability and morphology were further characterised using CellTracker Green/Ethidium Homodimer-1 immunocytochemistry and function was assessed by an alkaline phosphatase assay. An additional group was cultured for a further seven days to allow potential recovery of the cells after removal of the local anaesthetic.

A statistically significant and dose dependent reduction in cell viability and number was observed in the cell cultures exposed to all three local anaesthetics at concentrations of 25% and 50%, and this was maintained even following culture for a further seven days.

This study indicates that certain local anaesthetic agents in widespread clinical use are deleterious to skeletal progenitor cells when studied in vitro; this might have relevance in clinical applications.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 680 - 684
1 May 2008
Simon DWN Clarkin CE Das-Gupta V Rawlinson SCF Emery RJ Pitsillides AA

We examined cultured osteoblasts derived from paired samples from the greater tuberosity and acromion from eight patients with large chronic tears of the rotator cuff.

We found that osteoblasts from the tuberosity had no apparent response to mechanical stimulation, whereas those derived from the acromion showed an increase in alkaline phosphatase activity and nitric oxide release which is normally a response of bone cells to mechanical strain. By contrast, we found that cells from both regions were able to respond to dexamethasone, a well-established promoter of osteoblastic differentiation, with the expected increase in alkaline phosphatase activity.

Our findings indicate that the failure of repair of the rotator cuff may be due, at least in part, to a compromised capacity for mechanoadaptation within the greater tuberosity. It remains to be seen whether this apparent decrease in the sensitivity of bone cells to mechanical stimulation is the specific consequence of the reduced load-bearing history of the greater tuberosity in these patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 721 - 729
1 May 2005
Yanai T Ishii T Chang F Ochiai N

We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel.

The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.