The aims of this study were to assess the pre- and postoperative incidence of deep vein thrombosis (DVT) using routine duplex Doppler ultrasound (DUS), to assess the incidence of pulmonary embolism (PE) using CT angiography, and to identify the factors that predict postoperative DVT in patients with a pelvic and/or acetabular fracture. All patients treated surgically for a pelvic and/or acetabular fracture between October 2016 and January 2020 were enrolled into this prospective single-centre study. The demographic, medical, and surgical details of the patients were recorded. DVT screening of the lower limbs was routinely performed using DUS before and at six to ten days after surgery. CT angiography was used in patients who were suspected of having PE. Age-adjusted univariate and stepwise multiple logistic regression analysis were used to determine the association between explanatory variables and postoperative DVT.Aims
Methods
Complex displaced osteoporotic acetabular fractures in the elderly are associated with high levels of morbidity and mortality. Surgical options include either open reduction and internal fixation alone, or combined with total hip arthroplasty (THA). There remains a cohort of severely comorbid patients who are deemed unfit for extensive surgical reconstruction and are treated conservatively. We describe the results of a coned hemipelvis reconstruction and THA inserted via a posterior approach to the hip as the primary treatment for this severely high-risk cohort. We have prospectively monitored a series of 22 cases (21 patients) with a mean follow-up of 32 months (13 to 59).Aims
Methods
Stable fractures of the ankle can be successfully treated non-operatively by a below-knee plaster cast. In some centres, patients with this injury are routinely administered low-molecular-weight heparin, to reduce the risk of deep-vein thrombosis (DVT). We have assessed the incidence of DVT in 100 patients in the absence of any thromboprophylaxis. A colour Doppler duplex ultrasound scan was done at the time of the removal of the cast. Five patients did develop DVT, though none had clinical signs suggestive of it. One case involved the femoral and another the popliteal vein. No patient developed pulmonary embolism. As the incidence of DVT after ankle fractures is low, we do not recommend routine thromboprophylaxis.
We report the incidence and location of deep-vein thrombosis in 312 patients who had sustained high-energy, skeletal trauma. They were investigated using magnetic resonance venography and Duplex ultrasound. Despite thromboprophylaxis, 36 (11.5%) developed venous thromboembolic disease with an incidence of 10% in those with non-pelvic trauma and 12.2% in the group with pelvic trauma. Of patients who developed deep-vein thrombosis, 13 of 27 in the pelvic group (48%) and only one of nine in the non-pelvic group (11%) had a definite pelvic deep-vein thrombosis. When compared with magnetic resonance venography, ultrasound had a false-negative rate of 77% in diagnosing pelvic deep-vein thrombosis. Its value in the pelvis was limited, although it was more accurate than magnetic resonance venography in diagnosing clots in the lower limbs. Additional screening may be needed to detect pelvic deep-vein thrombosis in patients with pelvic or acetabular fractures.