Aims. The aims of this study were to determine the diagnostic yield of image-guided biopsy in providing a final diagnosis in patients with suspected infectious spondylodiscitis, to report the diagnostic accuracy of various microbiological tests and histological examinations in these patients, and to report the epidemiology of infectious spondylodiscitis from a country where tuberculosis (TB) is endemic, including the incidence of drug-resistant TB. Methods. A total of 284 patients with clinically and radiologically suspected infectious spondylodiscitis were prospectively recruited into the study. Image-guided biopsy of the vertebral lesion was performed and specimens were sent for various microbiological tests and histological examinations. The final diagnosis was determined using a
Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.Aims
Methods
The purpose of this study was to evaluate the
long-term outcome of adults with spina bifida cystica (SBC) who
had been treated either operatively or non-operatively for scoliosis
during childhood. We reviewed 45 patients with a SBC scoliosis (Cobb angle ≥ 50º)
who had been treated at one of two children’s hospitals between
1991 and 2007. Of these, 34 (75.6%) had been treated operatively
and 11 (24.4%) non-operatively. After a mean follow-up of 14.1 years
(standard deviation ( Although patients in the two groups were demographically similar,
those who had undergone surgery had a larger mean Cobb angle (88.0º
( Spinal fusion in SBC scoliosis corrects coronal deformity and
stops progression of the curve but has no clear effect on HRQOL. Cite this article:
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include biological therapies and novel surgical techniques (such
as total disc replacement), although many of these are still in
their experimental phase. Central to developing further methods
of treatment is the need for effective ways in which to assess patients
and measure their outcomes. However, significant difficulties remain
and it is therefore an appropriate time to be further investigating
the scientific basis of and treatment of LBP.
No previous studies have examined the physical
characteristics of patients with cauda equina syndrome (CES). We compared
the anthropometric features of patients who developed CES after
a disc prolapse with those who did not but who had symptoms that
required elective surgery. We recorded the age, gender, height,
weight and body mass index (BMI) of 92 consecutive patients who
underwent elective lumbar discectomy and 40 consecutive patients who
underwent discectomy for CES. On univariate analysis, the mean BMI
of the elective discectomy cohort (26.5 kg/m2 (16.6 to
41.7) was very similar to that of the age-matched national mean
(27.6 kg/m2, p = 1.0). However, the mean BMI of the CES
cohort (31.1 kg/m2 (21.0 to 54.9)) was significantly
higher than both that of the elective group (p <
0.001) and the
age-matched national mean (p <
0.001). A similar pattern was
seen with the weight of the groups. Multivariate logistic regression
analysis was performed, adjusted for age, gender, height, weight
and BMI. Increasing BMI and weight were strongly associated with
an increased risk of CES (odds ratio (OR) 1.17, p <
0.001; and
OR 1.06, p <
0.001, respectively). However, increasing height
was linked with a reduced risk of CES (OR 0.9, p <
0.01). The
odds of developing CES were 3.7 times higher (95% confidence interval
(CI) 1.2 to 7.8, p = 0.016) in the overweight and obese (as defined
by the World Health Organization: BMI ≥ 25 kg/m2) than
in those of ideal weight. Those with very large discs (obstructing
>
75% of the spinal canal) had a larger BMI than those with small
discs (obstructing <
25% of the canal; p <
0.01). We therefore
conclude that increasing BMI is associated with CES.
Lumbar spondylolysis is a stress fracture of the pars interarticularis. We have evaluated the site of origin of the fracture clinically and biomechanically. Ten adolescents with incomplete stress fractures of the pars (four bilateral) were included in our study. There were seven boys and three girls aged between 11 and 17 years. The site of the fracture was confirmed by axial and sagittal reconstructed CT. The maximum principal tensile stresses and their locations in the L5 pars during lumbar movement were calculated using a three-dimensional finite-element model of the L3-S1 segment. In all ten patients the fracture line was seen only at the caudal-ventral aspect of the pars and did not spread completely to the craniodorsal aspect. According to the finite-element analysis, the higher stresses were found at the caudal-ventral aspect in all loading modes. In extension, the stress was twofold higher in the ventral than in the dorsal aspect. Our radiological and biomechanical results were in agreement with our clinical observations.