Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 909 - 914
1 Jul 2018
Sheth NP Melnic CM Brown N Sporer SM Paprosky WG

Aims. The aim of this study was to examine the results of the acetabular distraction technique in achieving implantation of a stable construct, obtaining biological fixation, and producing healing of chronic pelvic discontinuity at revision total hip arthroplasty. Patients and Methods. We identified 32 patients treated between 2006 and 2013 who underwent acetabular revision for a chronic pelvic discontinuity using acetabular distraction, and who were radiographically evaluated at a mean of 62 months (25 to 160). Of these patients, 28 (87.5%) were female. The mean age at the time of revision was 67 years (44 to 86). The patients represented a continuous series drawn from two institutions that adhered to an identical operative technique. Results. Of the 32 patients, one patient required a revision for aseptic loosening, two patients had evidence of radiographic loosening but were not revised, and three patients had migration of the acetabular component into a more stable configuration. Radiographically, 22 (69%) of the cohort demonstrated healing of the discontinuity. The Kaplan–Meier construct survivorship was 83.3% when using revision for aseptic acetabular loosening as an endpoint. At the time when one patient failed due to aseptic loosening (at 7.4 years), there were a total of seven patients with a follow-up of seven years or longer who were at risk of failure. Conclusion. The acetabular distraction technique demonstrates encouraging radiographic outcomes, with healing of the discontinuity in over two-thirds of our series. This surgical technique permits biological fixation and intraoperative customization of the construct to be implanted based on the pattern of the bone loss identified following component removal. Cite this article: Bone Joint J 2018;100-B:909–14


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 36 - 42
1 Nov 2014
Sheth NP Melnic CM Paprosky WG

Acetabular bone loss is a challenging problem facing the revision total hip replacement surgeon. Reconstruction of the acetabulum depends on the presence of anterosuperior and posteroinferior pelvic column support for component fixation and stability. The Paprosky classification is most commonly used when determining the location and degree of acetabular bone loss. Augments serve the function of either providing primary construct stability or supplementary fixation. . When a pelvic discontinuity is encountered we advocate the use of an acetabular distraction technique with a jumbo cup and modular porous metal acetabular augments for the treatment of severe acetabular bone loss and associated chronic pelvic discontinuity. Cite this article: Bone Joint J 2014;96-B(11 Suppl A):36–42


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 73 - 77
1 Nov 2014
Brown NM Hellman M Haughom BH Shah RP Sporer SM Paprosky WG

A pelvic discontinuity occurs when the superior and inferior parts of the hemi-pelvis are no longer connected, which is difficult to manage when associated with a failed total hip replacement. Chronic pelvic discontinuity is found in 0.9% to 2.1% of hip revision cases with risk factors including severe pelvic bone loss, female gender, prior pelvic radiation and rheumatoid arthritis. Common treatment options include: pelvic plating with allograft, cage reconstruction, custom triflange implants, and porous tantalum implants with modular augments. The optimal technique is dependent upon the degree of the discontinuity, the amount of available bone stock and the likelihood of achieving stable healing between the two segments. A method of treating pelvic discontinuity using porous tantalum components with a distraction technique that achieves both initial stability and subsequent long-term biological fixation is described.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):73–7.