Infected nonunion of a long bone continues to
present difficulties in management. In addition to treating the infection,
it is necessary to establish bony stability, encourage fracture
union and reconstruct the soft-tissue envelope. We present a series of 67 infected nonunions of a long bone in
66 patients treated in a multidisciplinary unit. The operative treatment
of patients suitable for limb salvage was performed as a single
procedure. Antibiotic regimes were determined by the results of
microbiological culture. At a mean follow-up of 52 months (22 to 97), 59 patients (88%)
had an infection-free united fracture in a functioning limb. Seven
others required amputation (three as primary treatment, three after
late failure of limb salvage and one for recalcitrant pain after
union). The initial operation achieved union in 54 (84%) of the salvaged
limbs at a mean of nine months (three to 26), with recurrence of
infection in 9%. Further surgery in those limbs that remained ununited
increased the union rate to 62 (97%) of the 64 limbs treated by
limb salvage at final follow-up. The use of internal fixation was
associated with a higher risk of recurrent infection than external
fixation. Cite this article:
A silver-containing hydroxyapatite (Ag-HA) coating has been developed using thermal spraying technology. We evaluated the osteoconductivity of this coating on titanium (Ti) implants in rat tibiae in relation to bacterial infection in joint replacement. At 12 weeks, the mean affinity indices of bone formation of a Ti, an HA, a 3%Ag-HA and a 50%Ag-HA coating were 97.3%, 84.9%, 81.0% and 40.5%, respectively. The mean affinity indices of bone contact of these four coatings were 18.8%, 83.7%, 77.2% and 40.5%, respectively. The indices of bone formation and bone contact around the implant of the 3%Ag-HA coating were similar to those of the HA coating, and no significant differences were found between them (bone formation, p = 0.99; bone contact, p = 0.957). However, inhibition of bone formation was observed with the 50%Ag-HA coating. These results indicate that the 3%Ag-HA coating has low toxicity and good osteoconductivity, and that the effect of silver toxicity on osteoconductivity depends on the dose.