Excision of chronic osteomyelitic bone creates a dead space which must be managed to avoid early recurrence of infection. Systemic antibiotics cannot penetrate this space in high concentrations, so local treatment has become an attractive adjunct to surgery. The aim of this study was to present the mid- to long-term results of local treatment with gentamicin in a bioabsorbable ceramic carrier. A prospective series of 100 patients with Cierny-Mader Types III and IV chronic ostemyelitis, affecting 105 bones, were treated with a single-stage procedure including debridement, deep tissue sampling, local and systemic antibiotics, stabilization, and immediate skin closure. Chronic osteomyelitis was confirmed using strict diagnostic criteria. The mean follow-up was 6.05 years (4.2 to 8.4).Aims
Methods
The STRYDE nail is an evolution of the PRECICE Intramedullary Limb Lengthening System, with unique features regarding its composition. It is designed for load bearing throughout treatment in order to improve patient experience and outcomes and allow for simultaneous bilateral lower limb lengthening. The literature published to date is limited regarding outcomes and potential problems. We report on our early experience and raise awareness for the potential of adverse effects from this device. This is a retrospective review of prospective data collected on all patients treated in our institution using this implant. We report the demographics, nail accuracy, reliability, consolidation index, and cases where concerning clinical and radiological findings were encountered. There were 14 STRYDE nails implanted in nine patients (three male and six female) between June 2019 and September 2020. Mean age at surgery was 33 years (14 to 65). Five patients underwent bilateral lengthening (two femoral and three tibial) and four patients unilateral femoral lengthening for multiple aetiologies.Aims
Methods
Chronic osteomyelitis may recur if dead space management, after
excision of infected bone, is inadequate. This study describes the
results of a strategy for the management of deep bone infection
and evaluates a new antibiotic-loaded biocomposite in the eradication
of infection from bone defects. We report a prospective study of 100 patients with chronic osteomyelitis,
in 105 bones. Osteomyelitis followed injury or surgery in 81 patients.
Nine had concomitant septic arthritis. 80 patients had comorbidities
(Cierny-Mader (C-M) Class B hosts). Ten had infected nonunions. All patients were treated by a multidisciplinary team with a
single-stage protocol including debridement, multiple sampling,
culture-specific systemic antibiotics, stabilisation, dead space
filling with the biocomposite and primary skin closure. Aims
Patients and Methods
Periprosthetic joint infection (PJI) complicates
between 0.5% and 1.2% primary total hip arthroplasties (THAs) and
may have devastating consequences. The traditional assessment of
patients suffering from PJI has involved the serological study of
inflammatory markers and microbiological analysis of samples obtained
from the joint space. Treatment has involved debridement and revision
arthroplasty performed in either one or two stages. We present an update on the burden of PJI, strategies for its
diagnosis and treatment, the challenge of resistant organisms and
the need for definitive evidence to guide the treatment of PJI after
THA. Cite this article:
Bactericidal levels of antibiotics are difficult
to achieve in infected total joint arthroplasty when intravenous antibiotics
or antibiotic-loaded cement spacers are used, but intra-articular
(IA) delivery of antibiotics has been effective in several studies.
This paper describes a protocol for IA delivery of antibiotics in
infected knee arthroplasty, and summarises the results of a pharmacokinetic
study and two clinical follow-up studies of especially difficult
groups: methicillin-resistant Cite this article:
The most frequent cause of failure after total
hip replacement in all reported arthroplasty registries is peri-prosthetic
osteolysis. Osteolysis is an active biological process initiated
in response to wear debris. The eventual response to this process
is the activation of macrophages and loss of bone. Activation of macrophages initiates a complex biological cascade
resulting in the final common pathway of an increase in osteolytic
activity. The biological initiators, mechanisms for and regulation
of this process are beginning to be understood. This article explores current
concepts in the causes of, and underlying biological mechanism resulting
in peri-prosthetic osteolysis, reviewing the current basic science
and clinical literature surrounding the topic.
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
Osteoporosis is common and the health and financial
cost of fragility fractures is considerable. The burden of cardiovascular
disease has been reduced dramatically by identifying and targeting
those most at risk. A similar approach is potentially possible in
the context of fragility fractures. The World Health Organization
created and endorsed the use of FRAX, a fracture risk assessment
tool, which uses selected risk factors to calculate a quantitative,
patient-specific, ten-year risk of sustaining a fragility fracture.
Treatment can thus be based on this as well as on measured bone
mineral density. It may also be used to determine at-risk individuals,
who should undergo bone densitometry. FRAX has been incorporated
into the national osteoporosis guidelines of countries in the Americas,
Europe, the Far East and Australasia. The United Kingdom National
Institute for Health and Clinical Excellence also advocates its
use in their guidance on the assessment of the risk of fragility
fracture, and it may become an important tool to combat the health
challenges posed by fragility fractures.