The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.Aims
Methods
The optimal method of tibial component fixation remains uncertain
in total knee arthroplasty (TKA). Hydroxyapatite coatings have been
applied to improve bone ingrowth in uncemented designs, but may
only coat the directly accessible surface. As peri-apatite (PA)
is solution deposited, this may increase the coverage of the implant
surface and thereby fixation. We assessed the tibial component fixation
of uncemented PA-coated TKAs Patients were randomised to PA-coated or cemented TKAs. In 60
patients (30 in each group), radiostereometric analysis of tibial
component migration was evaluated as the primary outcome at baseline,
three months post-operatively and at one, two and five years. A
linear mixed-effects model was used to analyse the repeated measurements.Aims
Patients and Methods
The cause of dissatisfaction following total
knee arthroplasty (TKA) remains elusive. Much attention has been
focused on static mechanical alignment as a basis for surgical success and
optimising outcomes. More recently, research on both normal and
osteoarthritic knees, as well as kinematically aligned TKAs, has
suggested that other specific and dynamic factors may be more important
than a generic target of 0 ± 3º of a neutral axis. Consideration
of these other variables is necessary to understand ideal targets
and move beyond generic results. Cite this article:
The treatment of osteochondral lesions is of
great interest to orthopaedic surgeons because most lesions do not heal
spontaneously. We present the short-term clinical outcome and MRI
findings of a cell-free scaffold used for the treatment of these
lesions in the knee. A total of 38 patients were prospectively evaluated
clinically for two years following treatment with an osteochondral
nanostructured biomimetic scaffold. There were 23 men and 15 women; the
mean age of the patients was 30.5 years (15 to 64). Clinical outcome
was assessed using the Knee Injury and Osteoarthritis Outcome Score
(KOOS), the Tegner activity scale and a Visual Analgue scale for
pain. MRI data were analysed based on the Magnetic Resonance Observation
of Cartilage Repair Tissue (MOCART) scoring system at three, 12
and 24 months post-operatively. There was a continuous significant
clinical improvement after surgery. In two patients, the scaffold
treatment failed (5.3%) There was a statistically significant improvement
in the MOCART precentage scores. The repair tissue filled most of
the defect sufficiently. We found subchondral laminar changes in all
patients. Intralesional osteophytes were found in two patients (5.3%).
We conclude that this one-step scaffold-based technique can be used
for osteochondral repair. The surgical technique is straightforward,
and the clinical results are promising. The MRI aspects of the repair
tissue continue to evolve during the first two years after surgery.
However, the subchondral laminar and bone changes are a concern. Cite this article:
The rate of peri-prosthetic infection following
total joint replacement continues to rise, and attempts to curb
this trend have included the use of antibiotic-loaded bone cement
at the time of primary surgery. We have investigated the clinical-
and cost-effectiveness of the use of antibiotic-loaded cement for
primary total knee replacement (TKR) by comparing the rate of infection
in 3048 TKRs performed without loaded cement over a three-year period The absolute rate of infection increased when antibiotic-loaded
cement was used in TKR. However, this rate of increase was less
than the rate of increase in infection following uncemented THR
during the same period. If the rise in the rate of infection observed
in THR were extrapolated to the TKR cohort, 18 additional cases
of infection would have been expected to occur in the cohort receiving
antibiotic-loaded cement, compared with the number observed. Depending
on the type of antibiotic-loaded cement that is used, its cost in
all primary TKRs ranges between USD $2112.72 and USD $112 606.67
per case of infection that is prevented. Cite this article:
We investigated the characteristics of patients
who achieved Japanese-style deep flexion (seiza-sitting) after total knee
replacement (TKR) and measured three-dimensional positioning and
the contact positions of the femoral and tibial components. Seiza-sitting
was achieved after surgery by 23 patients (29 knees) of a series
of 463 TKRs in 341 patients. Pre-operatively most of these patients
were capable of seiza-sitting, had a lower body mass index and a favourable
attitude towards the Japanese lifestyle (27 of 29 knees). According
to two-/three-dimensional image registration analysis in the seiza-sitting
position, flexion, varus and internal rotation angles of the tibial
component relative to the femoral component had means of 148° ( Cite this article:
Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of cyclical loading of cement spacers on the elution of antibiotics. Femoral and tibial spacers containing vancomycin at a constant concentration and tobramycin of varying concentrations were studied The elution of tobramycin increased proportionately with its concentration in cement and was significantly higher at all sampling times from five minutes to 1680 minutes in loaded components compared with the control group (p = 0.021 and p = 0.003, respectively). A similar trend was observed with elution of vancomycin, but this failed to reach statistical significance at five, 1320 and 1560 minutes (p = 0.0508, p = 0.067 and p = 0.347, respectively). However, cyclically loaded and control components showed an increased elution of vancomycin with increasing tobramycin concentration in the specimens, despite all components having the same vancomycin concentration. The concentration of tobramycin influences both tobramycin and vancomycin elution from bone cement. Cyclical loading of the cement spacers enhanced the elution of vancomycin and tobramycin.
Autologous chondrocyte implantation is an option in the treatment of full-thickness chondral or osteochondral injuries which are symptomatic. The goal of surgery and rehabilitation is the replacement of damaged cartilage with hyaline or hyaline-like cartilage, producing improved levels of function and preventing early osteoarthritis. The intermediate results have been promising in terms of functional and clinical improvement. Our aim was to explore the hypothesis that the histological quality of the repair tissue formed after autologous chondrocyte implantation improved with increasing time after implantation. In all, 248 patients who had undergone autologous chondrocyte implantation had biopsies taken of the repair tissue which then underwent histological grading. Statistical analysis suggested that with doubling of the time after implantation the likelihood of a favourable histological outcome was increased by more than fourfold (p <
0.001).