Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1599 - 1607
1 Dec 2020
Marson BA Craxford S Deshmukh SR Grindlay DJC Manning JC Ollivere BJ

Aims

This study evaluates the quality of patient-reported outcome measures (PROMs) reported in childhood fracture trials and recommends outcome measures to assess and report physical function, functional capacity, and quality of life using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) standards.

Methods

A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic review of OVID Medline, Embase, and Cochrane CENTRAL was performed to identify all PROMs reported in trials. A search of OVID Medline, Embase, and PsycINFO was performed to identify all PROMs with validation studies in childhood fractures. Development studies were identified through hand-searching. Data extraction was undertaken by two reviewers. Study quality and risk of bias was evaluated by COSMIN guidelines and recorded on standardized checklists.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1292 - 1303
1 Dec 2022
Polisetty TS Jain S Pang M Karnuta JM Vigdorchik JM Nawabi DH Wyles CC Ramkumar PN

Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered.

Cite this article: Bone Joint J 2022;104-B(12):1292–1303.