Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 72 - 81
1 Jan 2020
Downie S Lai FY Joss J Adamson D Jariwala AC

Aims. The early mortality in patients with hip fractures from bony metastases is unknown. The objectives of this study were to quantify 30- and 90-day mortality in patients with proximal femoral metastases, and to create a mortality prediction tool based on biomarkers associated with early death. Methods. This was a retrospective cohort study of consecutive patients referred to the orthopaedic department at a UK trauma centre with a proximal femoral metastasis (PFM) over a seven-year period (2010 to 2016). The study group were compared to a matched control group of non-metastatic hip fractures. Minimum follow-up was one year. Results. There was a 90-day mortality of 46% in patients with metastatic hip fractures versus 12% in controls (89/195 and 24/192, respectively; p < 0.001). Mean time to surgery was longer in symptomatic metastases versus complete fractures (9.5 days (SD 19.8) and 3.4 days (SD 11.4), respectively; p < 0.05). Albumin, urea, and corrected calcium were all independent predictors of early mortality and were used to generate a simple tool for predicting 90-day mortality, titled the Metastatic Early Prognostic (MEP) score. An MEP score of 0 was associated with the lowest risk of death at 30 days (14%, 3/21), 90 days (19%, 4/21), and one year (62%, 13/21). MEP scores of 3/4 were associated with the highest risk of death at 30 days (56%, 5/9), 90 days (100%, 9/9), and one year (100%, 9/9). Neither age nor primary cancer diagnosis was an independent predictor of mortality at 30 and 90 days. Conclusion. This score could be used to predict early mortality and guide perioperative counselling. The delay to surgery identifies a potential window to intervene and correct these abnormalities with the aim of improving survival. Cite this article: Bone Joint J. 2020;102-B(1):72–81


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1115 - 1122
1 Oct 2023
Archer JE Chauhan GS Dewan V Osman K Thomson C Nandra RS Ashford RU Cool P Stevenson J

Aims

Most patients with advanced malignancy suffer bone metastases, which pose a significant challenge to orthopaedic services and burden to the health economy. This study aimed to assess adherence to the British Orthopaedic Oncology Society (BOOS)/British Orthopaedic Association (BOA) guidelines on patients with metastatic bone disease (MBD) in the UK.

Methods

A prospective, multicentre, national collaborative audit was designed and delivered by a trainee-led collaborative group. Data were collected over three months (1 April 2021 to 30 June 2021) for all patients presenting with MBD. A data collection tool allowed investigators at each hospital to compare practice against guidelines. Data were collated and analyzed centrally to quantify compliance from 84 hospitals in the UK for a total of 1,137 patients who were eligible for inclusion.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 702 - 710
1 Jun 2023
Yeramosu T Ahmad W Bashir A Wait J Bassett J Domson G

Aims

The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients.

Methods

Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset.