Peripheral nerve injury is an uncommon but serious
complication of hip surgery that can adversely affect the outcome.
Several studies have described the use of electromyography and intra-operative
sensory evoked potentials for early warning of nerve injury. We
assessed the results of multimodal intra-operative monitoring during
complex hip surgery. We retrospectively analysed data collected
between 2001 and 2010 from 69 patients who underwent complex hip
surgery by a single surgeon using multimodal intra-operative monitoring
from a total pool of 7894 patients who underwent hip surgery during
this period. In 24 (35%) procedures the surgeon was alerted to a
possible lesion to the sciatic and/or femoral nerve. Alerts were
observed most frequently during peri-acetabular osteotomy. The surgeon
adapted his approach based on interpretation of the neurophysiological changes.
From 69 monitored surgical procedures, there was only one true positive
case of post-operative nerve injury. There were no false positives
or false negatives, and the remaining 68 cases were all true negative.
The sensitivity for predicting post-operative nerve injury was 100%
and the specificity 100%. We conclude that it is possible and appropriate
to use this method during complex hip surgery and it is effective
for alerting the surgeon to the possibility of nerve injury.
Of a consecutive series of 117 one-year-old infants with 130 established dislocations of the hip, 11% failed to respond to primary surgical treatment. Genetic and iatrogenic factors accounted for half the failures. There were no obvious causes in the remainder, though a few had the superficial stigmata of spinal dysraphism, and by two years of age, most of the group had developed a lateral rotation posture of the affected leg associated with a relatively smaller foot on that side. Radiologically, the femoral head had drifted and rotated laterally out of the surgically deepened acetabulum, causing persistent subluxation. Although there was no clinical evidence of sensory or motor denervation,
The aim of this study was to evaluate the feasibility
of using the intact S1 nerve root as a donor nerve to repair an avulsion
of the contralateral lumbosacral plexus. Two cohorts of patients
were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients
with a unilateral fracture of the sacrum and sacral nerve injury
were stimulated during surgery to establish the precise functional
distribution of the S1 nerve root and its proportional contribution
to individual muscles. In cohort 2, the contralateral uninjured
S1 nerve root of six patients with a unilateral lumbosacral plexus
avulsion was transected extradurally and used with a 25 cm segment
of the common peroneal nerve from the injured leg to reconstruct
the avulsed plexus. The results from cohort 1 showed that the innervation of S1 in
each muscle can be compensated for by L4, L5, S2 and S3. Numbness
in the toes and a reduction in strength were found after surgery
in cohort 2, but these symptoms gradually disappeared and strength
recovered. The results of electrophysiological studies of the donor
limb were generally normal. Severing the S1 nerve root does not appear to damage the healthy
limb as far as clinical assessment and electrophysiological testing
can determine. Consequently, the S1 nerve can be considered to be
a suitable donor nerve for reconstruction of an avulsed contralateral
lumbosacral plexus. Cite this article: