The optimal method of tibial component fixation remains uncertain
in total knee arthroplasty (TKA). Hydroxyapatite coatings have been
applied to improve bone ingrowth in uncemented designs, but may
only coat the directly accessible surface. As peri-apatite (PA)
is solution deposited, this may increase the coverage of the implant
surface and thereby fixation. We assessed the tibial component fixation
of uncemented PA-coated TKAs Patients were randomised to PA-coated or cemented TKAs. In 60
patients (30 in each group), radiostereometric analysis of tibial
component migration was evaluated as the primary outcome at baseline,
three months post-operatively and at one, two and five years. A
linear mixed-effects model was used to analyse the repeated measurements.Aims
Patients and Methods
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its stability.
The purpose of this study was to compare the primary stability of
the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver
knees. In each pair, one knee received the single peg and one received
the twin peg design. Three dimensional micromotion and subsidence
of the component in relation to the bone was measured under cyclical
loading at flexion of 40° and 70° using an optical measuring system.
Wilcoxon matched pairs signed-rank test was performed to detect
differences between the two groups. There was no significant difference in the relative micromotion
(p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and
0.176, respectively) of the component between the two groups at
both angles of flexion. Both designs of component offered good strength
of fixation in this cadaver study. Cite this article: