Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 97 - 102
1 Jan 2022
Hijikata Y Kamitani T Nakahara M Kumamoto S Sakai T Itaya T Yamazaki H Ogawa Y Kusumegi A Inoue T Yoshida T Furue N Fukuhara S Yamamoto Y

Aims. To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. Methods. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism. Results. Of the 377 patients used for model derivation, 58 (15%) had an acute AVF postoperatively. The following preoperative measures on multivariable analysis were summarized in the five-point AVA score: intravertebral instability (≥ 5 mm), focal kyphosis (≥ 10°), duration of symptoms (≥ 30 days), intravertebral cleft, and previous history of vertebral fracture. Internal validation showed a mean optimism of 0.019 with a corrected AUC of 0.77. A cut-off of ≤ one point was chosen to classify a low risk of AVF, for which only four of 137 patients (3%) had AVF with 92.5% sensitivity and 45.6% specificity. A cut-off of ≥ four points was chosen to classify a high risk of AVF, for which 22 of 38 (58%) had AVF with 41.5% sensitivity and 94.5% specificity. Conclusion. In this study, the AVA score was found to be a simple preoperative method for the identification of patients at low and high risk of postoperative acute AVF. This model could be applied to individual patients and could aid in the decision-making before vertebral augmentation. Cite this article: Bone Joint J 2022;104-B(1):97–102


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 154 - 161
1 Feb 2019
Cheung PWH Fong HK Wong CS Cheung JPY

Aims. The aim of this study was to determine the influence of developmental spinal stenosis (DSS) on the risk of re-operation at an adjacent level. Patients and Methods. This was a retrospective study of 235 consecutive patients who had undergone decompression-only surgery for lumbar spinal stenosis and had a minimum five-year follow-up. There were 106 female patients (45.1%) and 129 male patients (54.9%), with a mean age at surgery of 66.8 years (. sd. 11.3). We excluded those with adult deformity and spondylolisthesis. Presenting symptoms, levels operated on initially and at re-operation were studied. MRI measurements included the anteroposterior diameter of the bony spinal canal, the degree of disc degeneration, and the thickness of the ligamentum flavum. DSS was defined by comparative measurements of the bony spinal canal. Risk factors for re-operation at the adjacent level were determined and included in a multivariate stepwise logistic regression for prediction modelling. Odds ratios (ORs) with 95% confidence intervals were calculated. Results. Of the 235 patients, 21.7% required re-operation at an adjacent segment. Re-operation at an adjacent segment was associated with DSS (p = 0.026), the number of levels decompressed (p = 0.008), and age at surgery (p = 0.013). Multivariate regression model (p < 0.001) controlled for other confounders showed that DSS was a significant predictor of re-operation at an adjacent segment, with an adjusted OR of 3.93. Conclusion. Patients with DSS who have undergone lumbar spinal decompression are 3.9 times more likely to undergo future surgery at an adjacent level. This is a poor prognostic indicator that can be identified prior to index decompression surgery


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims

The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment.

Methods

Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 131 - 140
1 Jan 2021
Lai MKL Cheung PWH Samartzis D Karppinen J Cheung KMC Cheung JPY

Aims

To study the associations of lumbar developmental spinal stenosis (DSS) with low back pain (LBP), radicular leg pain, and disability.

Methods

This was a cross-sectional study of 2,206 subjects along with L1-S1 axial and sagittal MRI. Clinical and radiological information regarding their demographics, workload, smoking habits, anteroposterior (AP) vertebral canal diameter, spondylolisthesis, and MRI changes were evaluated. Mann-Whitney U tests and chi-squared tests were conducted to search for differences between subjects with and without DSS. Associations of LBP and radicular pain reported within one month (30 days) and one year (365 days) of the MRI, with clinical and radiological information, were also investigated by utilizing univariate and multivariate logistic regressions.