This is a retrospective study of 612 cases of iatropathic injury to
Multiple tumours of
Locognosia, the ability to localise touch, is one aspect of tactile spatial discrimination which relies on the integrity of peripheral end-organs as well as the somatosensory representation of the surface of the body in the brain. The test presented here is a standardised assessment which uses a protocol for testing locognosia in the zones of the hand supplied by the median and/or ulnar nerves. The test-retest reliability and discriminant validity were investigated in 39 patients with injuries to the median or ulnar nerve. Intraclass correlation coefficients were used to calculate the test-retest reliability. Discriminant validity was assessed by comparing the injured with the unaffected hand. Excellent test-retest reliability was demonstrated for the injuries to the median (intraclass correlation coefficient 0.924, 95% confidence interval 0.848 to 1.00) and the ulnar nerves (intraclass correlation coefficient 0.859, 95% confidence interval 0.693 to 1.00). The magnitude of the difference in scores between affected and unaffected hands showed good discriminant validity. For injuries to the median nerve the mean difference was 11.1 points (1 to 33; . sd. 7.4), which was statistically significant (p <
0.0001, paired t-test) and for those of the ulnar nerve it was 4.75 points (1 to 13.5; . sd. 3.16), which was also statistically significant (paired t-test, p <
0.0001). The locognosia test has excellent test-retest reliability, is a valid test of tactile spatial discrimination and should be included in the evaluation of outcome after injury to
We prospectively studied 26 consecutive patients with clinically documented sensory or motor deficiency of a peripheral nerve due to trauma or entrapment using ultrasound, and in 19 cases surgical exploration of the nerves was undertaken. The ultrasonographic diagnoses were correlated with neurological examination and the surgical findings. Reliable visualisation of injured nerves on ultrasonography was achieved in all patients. Axonal swelling and hypoechogenity of the nerve was diagnosed in 15 cases, loss of continuity of a nerve bundle in 17, the formation of a neuroma of a stump in six, and partial laceration of a nerve with loss of the normal fascicular pattern in five. The ultrasonographic findings were confirmed at operation in those who had surgery. Ultrasound may be used for the evaluation of peripheral nerve injuries in the upper limb. High-resolution ultrasound can show the exact location, extent and type of lesion, yielding important information that might not be obtainable by other diagnostic aids.
In this study, we discuss 68 cases in which peripheral nerve trunks were inadvertently divided by surgeons. Most of these accidents occurred in the course of planned operations. Delay in diagnosis and in effecting repair was common. We list the nerves particularly at risk and the operations in which special care is needed. We recommend steps to secure prompt diagnosis and early treatment.
We undertook a retrospective analysis of 306
procedures on 233 patients, with a mean age of 12 years (1 to 21),
in order to evaluate the use of somatosensory evoked potential (SSEP)
monitoring for the early detection of nerve compromise during external
fixation procedures for limb lengthening and correction of deformity.
Significant SSEP changes were identified during 58 procedures (19%).
In 32 instances (10.5%) the changes were transient, and resolved
once the surgical cause had been removed. The remaining 26 (8.5%)
were analysed in two groups, depending on whether or not corrective
action had been performed in response to critical changes in the
SSEP recordings. In 16 cases in which no corrective action was taken,
13 (81.2%, 4.2% overall) developed a post-operative neurological
deficit, six of which were permanent and seven temporary, persisting
for five to 18 months. In the ten procedures in which corrective
action was taken, four patients (40%, 1.3% overall) had a temporary
(one to eight months) post-operative neuropathy and six had no deficit. After appropriate intervention in response to SSEP changes, the
incidence and severity of neurological deficits were significantly
reduced, with no cases of permanent neuropathy. SSEP monitoring
showed 100% sensitivity and 91% specificity for the detection of
nerve injury during external fixation. It is an excellent diagnostic
technique for identifying nerve lesions when they are still highly
reversible.
Injuries to the sciatic nerve are an occasional complication of surgery to the hip and acetabulum, and traction is frequently the causative mechanism. In vitro and animal experiments have shown that increased tensile strain on
We describe two patients with claw hand as a result of a bee sting. It is likely that this was caused by the apamin in the sting which has an effect on the upper limb, at the spinal cord and on the
Coaxial autografts of skeletal muscle which had been frozen then thawed were used to repair injured digital nerves in eight patients. Assessment from three to 11 months after operation showed recovery to MRC sensory category S3+ in all but one patient, an excellent level of recovery. We conclude that bespoke muscle grafts treated and used in this way may offer significant advantages over conventional nerve grafts or cable grafts especially where large
Skeletal muscle grafts, when thawed after freezing, can be used to repair
About 20% of patients with leprosy develop localised granulomatous lesions in
Schwannomas are the most common tumours of the sheath of
Apart from preliminary notices of present work, previous reports of experimental and clinical trials of the effects of a high-peak pulsed electromagnetic field (PEMF) on degeneration and regeneration of
Upper limb amputations, ranging from transhumeral to partial hand, can be devastating for patients, their families, and society. Modern paradigm shifts have focused on reconstructive options after upper extremity limb loss, rather than considering the amputation an ablative procedure. Surgical advancements such as targeted muscle reinnervation and regenerative peripheral nerve interface, in combination with technological development of modern prosthetics, have expanded options for patients after amputation. In the near future, advances such as osseointegration, implantable myoelectric sensors, and implantable nerve cuffs may become more widely used and may expand the options for prosthetic integration, myoelectric signal detection, and restoration of sensation. This review summarizes the current advancements in surgical techniques and prosthetics for upper limb amputees. Cite this article: