Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1455 - 1456
1 Nov 2012
Oussedik S Gould K Stockley I Haddad FS

Peri-prosthetic infection remains a leading cause of revision surgery. Recent publications from the American Musculoskeletal Infection Society have sought to establish a definition of peri-prosthetic infection based on clinical findings and laboratory investigations. The limitations of their approach are discussed and an alternative definition is proposed, which it is felt may better reflect the uncertainties encountered in clinical practice


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1022 - 1026
1 Aug 2013
O’Neill SC Queally JM Devitt BM Doran PP O’Byrne JM

Peri-prosthetic osteolysis and subsequent aseptic loosening is the most common reason for revising total hip replacements. Wear particles originating from the prosthetic components interact with multiple cell types in the peri-prosthetic region resulting in an inflammatory process that ultimately leads to peri-prosthetic bone loss. These cells include macrophages, osteoclasts, osteoblasts and fibroblasts. The majority of research in peri-prosthetic osteolysis has concentrated on the role played by osteoclasts and macrophages. The purpose of this review is to assess the role of the osteoblast in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts and contribute to the osteolytic process by two mechanisms. First, particles and metallic ions have been shown to inhibit the osteoblast in terms of its ability to secrete mineralised bone matrix, by reducing calcium deposition, alkaline phosphatase activity and its ability to proliferate. Secondly, particles and metallic ions have been shown to stimulate osteoblasts to produce pro inflammatory mediators in vitro. In vivo, these mediators have the potential to attract pro-inflammatory cells to the peri-prosthetic area and stimulate osteoclasts to absorb bone. Further research is needed to fully define the role of the osteoblast in peri-prosthetic osteolysis and to explore its potential role as a therapeutic target in this condition. Cite this article: Bone Joint J 2013;95-B:1021–5


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone. Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 382 - 385
1 Mar 2006
Schindler OS Spencer RF Smith MD

The aim of this study was to re-assess whether the use of a ‘one-knife technique’ can be considered as safe as the alternative practice of using separate skin and inside knives for elective orthopaedic surgery. A total of 609 knife blades from 203 elective orthopaedic operations, with equal numbers of skin, inside and control blades, were cultured using direct and enrichment media. We found 31 skin blades (15.3%), 22 inside blades (10.8%), and 13 control blades (6.4%) gave bacterial growth. Of the 31 contaminated skin blades only three (9.7%) had growth of the same organism as found on the corresponding inside blade. It is not known whether contamination of deeper layers in the remaining 90% was prevented by changing the knife after the skin incision. The organisms cultured were predominantly coagulase-negative staphylococci and proprionibacterium species; both are known to be the major culprits in peri-prosthetic infection. Our study suggests that the use of separate skin and inside knives should be maintained as good medical practice, since the cost of a single deep infection in human and financial terms can be considerable


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 943 - 948
1 Jul 2006
Phillips JE Crane TP Noy M Elliott TSJ Grimer RJ

The Control of Infection Committee at a specialist orthopaedic hospital prospectively collected data on all episodes of bacteriologically-proven deep infection arising after primary hip and knee replacements over a 15-year period from 1987 to 2001. There were 10 735 patients who underwent primary hip or knee replacement. In 34 of 5947 hip replacements (0.57%) and 41 of 4788 knee replacements (0.86%) a deep infection developed. The most common infecting micro-organism was coagulase-negative staphylococcus, followed by Staphylococcus aureus, enterococci and streptococci. Of the infecting organisms, 72% were sensitive to routine prophylactic antimicrobial agents. Of the infections, 29% (22) arose in the first three months following surgery, 35% between three months and one year (26), and 36% (27) after one year. Most cases were detected early and treated aggressively, with eradication of the infection in 96% (72). There was no significant change in the infection rate or type of infecting micro-organism over the course of this study. These results set a benchmark, and importantly emphasise that only 64% of peri-prosthetic infections arise within one year of surgery. These results also illustrate the advantages of conducting joint replacement surgery in the isolation of a specialist hospital


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 292 - 299
1 Mar 2015
Karthik K Colegate-Stone T Dasgupta P Tavakkolizadeh A Sinha J

The use of robots in orthopaedic surgery is an emerging field that is gaining momentum. It has the potential for significant improvements in surgical planning, accuracy of component implantation and patient safety. Advocates of robot-assisted systems describe better patient outcomes through improved pre-operative planning and enhanced execution of surgery. However, costs, limited availability, a lack of evidence regarding the efficiency and safety of such systems and an absence of long-term high-impact studies have restricted the widespread implementation of these systems. We have reviewed the literature on the efficacy, safety and current understanding of the use of robotics in orthopaedics.

Cite this article: Bone Joint J 2015; 97-B:292–9.