Brace treatment is the cornerstone of managing developmental dysplasia of the hip (DDH), yet there is a lack of evidence-based treatment protocols, which results in wide variations in practice. To resolve this, we have developed a comprehensive nonoperative treatment protocol conforming to published consensus principles, with well-defined a priori criteria for inclusion and successful treatment. This was a single-centre, prospective, longitudinal cohort study of a consecutive series of infants with ultrasound-confirmed DDH who underwent a comprehensive nonoperative brace management protocol in a unified multidisciplinary clinic between January 2012 and December 2016 with five-year follow-up radiographs. The radiological outcomes were acetabular index-lateral edge (AI-L), acetabular index-sourcil (AI-S), centre-edge angle (CEA), acetabular depth ratio (ADR), International Hip Dysplasia Institute (IHDI) grade, and evidence of avascular necrosis (AVN). At five years, each hip was classified as normal (< 1 SD), borderline dysplastic (1 to 2 SDs), or dysplastic (> 2 SDs) based on validated radiological norm-referenced values.Aims
Methods
Perthes’ disease (PD) often results in femoral head deformity and leg length discrepancy (LLD). Our objective was to analyze femoral morphology in PD patients at skeletal maturity to assess where the LLD originates, and evaluate the effect of contralateral epiphysiodesis for length equalization on proximal and subtrochanteric femoral lengths. All patients treated for PD in our institution between January 2013 and June 2020 were reviewed retrospectively. Patients with unilateral PD, LLD of ≥ 5 mm, and long-leg standing radiographs at skeletal maturity were included. Total leg length, femoral and tibial length, articulotrochanteric distance (ATD), and subtrochanteric femoral length were compared between PD side and the unaffected side. Furthermore, we compared leg length measurements between patients who did and who did not have a contralateral epiphysiodesis.Aims
Methods
The aim of this study was to determine the extent to which patient demographics, clinical presentation, and blood parameters vary in A prospective case series was undertaken at a single UK paediatric institution between October 2012 and November 2018 of all patients referred with suspected septic arthritis. We recorded the clinical, biochemical, and microbiological findings in all patients.Aims
Methods
The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve.Aims
Methods
We compared the accuracy of the growth remaining
method of assessing leg-length discrepancy (LLD) with the straight-line
graph method, the multiplier method and their variants. We retrospectively
reviewed the records of 44 patients treated by percutaneous epiphysiodesis
for LLD. All were followed up until maturity. We used the modified Green–Anderson
growth-remaining method (Method 1) to plan the timing of epiphysiodesis.
Then we presumed that the other four methods described below were
used pre-operatively for calculating the timing of epiphysiodesis. We
then assumed that these four methods were used pre-operatively.
Method 2 was the original Green–Anderson growth-remaining method;
Method 3, Paley’s multiplier method using bone age; Method 4, Paley’s
multiplier method using chronological age; and Method 5, Moseley’s
straight-line graph method. We compared ‘Expected LLD at maturity
with surgery’ with ‘Final LLD at maturity with surgery’ for each
method. Statistical analysis revealed that ‘Expected LLD at maturity
with surgery’ was significantly different from ‘Final LLD at maturity
with surgery’. Method 2 was the most accurate. There was a significant
correlation between ‘Expected LLD at maturity with surgery’ and
‘Final LLD at maturity with surgery’, the greatest correlation being
with Method 2. Generally all the methods generated an overcorrected
value. No method generates the precise ‘Expected LLD at maturity
with surgery’. It is essential that an analysis of the pattern of
growth is taken into account when predicting final LLD. As many
additional data as possible are required. Cite this article: