A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
Technological advances and shorter rescue times have allowed early and effective resuscitation after trauma and brought attention to the host response to injury. Trauma patients are at risk of progressive organ dysfunction from what appears to be an uncontrolled immune response. The availability of improved techniques of molecular diagnosis has allowed investigation of the role of genetic variations in the inflammatory response to post-traumatic complications and particularly to sepsis. This review examines the current evidence for the genetic predisposition to adverse outcome after trauma. While there is evidence supporting the involvement of different polymorphic variants of genes in determining the post-traumatic course and the development of complications, larger-scale studies are needed to improve the understanding of how genetic variability influences the responses to post-traumatic complications and pharmacotherapy.
This article considers the establishment, purpose and conduct of knee arthroplasty registers using the Swedish register as an example. The methods of collection of appropriate data, the cost, and the ways in which this information may be used are considered.
The dismal outcome of tuberculosis of the spine in the pre-antibiotic era has improved significantly because of the use of potent antitubercular drugs, modern diagnostic aids and advances in surgical management. MRI allows the diagnosis of a tuberculous lesion, with a sensitivity of 100% and specificity of 88%, well before deformity develops. Neurological deficit and deformity are the worst complications of spinal tuberculosis. Patients treated conservatively show an increase in deformity of about 15°. In children, a kyphosis continues to increase with growth even after the lesion has healed. Tuberculosis of the spine is a medical disease which is not primarily treated surgically, but operation is required to prevent and treat the complications. Panvertebral lesions, therapeutically refractory disease, severe kyphosis, a developing neurological deficit, lack of improvement or deterioration are indications for surgery. Patients who present with a kyphosis of 60° or more, or one which is likely to progress, require anterior decompression, posterior shortening, posterior instrumented stabilisation and anterior and posterior bone grafting in the active stage of the disease. Late-onset paraplegia is best prevented rather than treated. The awareness and suspicion of an atypical presentation of spinal tuberculosis should be high in order to obtain a good outcome. Therapeutically refractory cases of tuberculosis of the spine are increasing in association with the presence of HIV and multidrug-resistant tuberculosis.
The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.
This review discusses the pathogenesis and surgical treatment of tears of the rotator cuff.
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.