header advert
Results 1 - 20 of 59
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 114 - 121
1 Jan 2008
Pendegrass CJ Gordon D Middleton CA Sun SNM Blunn GW

Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron microscopy and transmission electron microscopy to assess cell parameters. We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment in vivo, producing an effective barrier of infection


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis. All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 814 - 820
1 Jun 2008
Chu CR Izzo NJ Coyle CH Papas NE Logar A

We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal microscopy of human articular chondrocytes showed > 95% cellular death after exposure to 0.5% bupivacaine for 30 minutes. Human and bovine chondrocytes exposed to 0.25% bupivacaine had a time-dependent reduction in viability, with longer exposure times resulting in higher cytotoxicity. Cellular death continued even after removal of 0.25% bupivacaine. After exposure to 0.25% bupivacaine for 15 minutes, flow cytometry showed bovine chondrocyte viability to be 41% of saline control after seven days. After exposure to 0.125% bupivacaine for up to 60 minutes, the viability of both bovine and human chondrocytes was similar to that of control groups. These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 277 - 284
1 Feb 2011
Amin AK Huntley JS Patton JT Brenkel IJ Simpson AHRW Hall AC

The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces in situ chondrocyte death following a standardised mechanical injury produced by a scalpel cut compared with the same assault and exposure to normal saline (0.9%, 285 mOsm). Human cartilage explants were exposed to normal (control) and hyperosmotic 0.9% saline solutions for five minutes before the mechanical injury to allow in situ chondrocytes to respond to the altered osmotic environment, and incubated for a further 2.5 hours in the same solutions following the mechanical injury. Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated. We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 691 - 699
1 May 2009
Amin AK Huntley JS Simpson AHRW Hall AC

The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p < 0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p > 0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 830 - 835
1 Jun 2007
Hara Y Ochiai N Abe I Ichimura H Saijilafu Nishiura Y

We investigated the effect of progesterone on the nerve during lengthening of the limb in rats. The sciatic nerves of rats were elongated by leg lengthening for ten days at 3 mm per day. On alternate days between the day after the operation and nerve dissection, the progesterone-treated group received subcutaneous injections of 1 mg progesterone in sesame oil and the control group received oil only. On the fifth, tenth and 17th day, the sciatic nerves were excised at the midpoint of the femur and the mRNA expression level of myelin protein P0 was analysed by quantitative real time polymerase chain reaction. On day 52 nodal length was examined by electron microscopy, followed by an examination of the compound muscle action potential (C-MAP) amplitude and the motor conduction velocity (MCV) of the tibial nerve on days 17 and 52. The P0 (a major myelin glycoprotein) mRNA expression level in the progesterone-treated group increased by 46.6% and 38.7% on days five and ten, respectively. On day 52, the nodal length in the progesterone-treated group was smaller than that in the control group, and the MCV of the progesterone-treated group had been restored to normal. Progesterone might accelerate the restoration of demyelination caused by nerve elongation by activating myelin synthesis


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 124 - 129
1 Jan 2001
Lofthouse RA Davis JR Frondoza CG Jinnah RH Hungerford DS Hare JM

Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the osteoblast has been widely studied in an effort to understand the signalling pathways by which it responds to extracellular stimuli. Our aim in this study was to identify caveolae and their structural protein caveolin in normal human osteoblasts, and to determine which subtypes of caveolin were present. Confocal microscopy showed staining which was associated with the plasma membrane. Transmission electron microscopy revealed the presence of membrane invaginations of 50 to 100 nm, consistent with the appearance of caveolae. Finally, we isolated protein from these osteoblasts, and performed Western blotting using anti-caveolin primary antibodies. This revealed the presence of caveolin-1 and -2, while caveolin-3 was absent. The identification of these structures and their associated protein may provide a significant contribution to our further understanding of signal transduction pathways in osteoblasts


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 144 - 150
1 Jan 1998
Hunziker EB Kapfinger E Müller ME

Lesions within the articular cartilage layer of synovial joints do not heal spontaneously. Some repair cells may appear, but their failure to become established may be related to problems of adhesion to proteoglycan-rich surfaces. We therefore investigated whether controlled enzymatic degradation of surface proteoglycan molecules to a depth of about 1 μm, using chondroitinase ABC, would improve coverage by repair cells. We created superficial lesions (1.0 × 0.2 × 5 mm) in the articular cartilage of mature rabbit knees and treated the surfaces with 1 U/ml of chondroitinase ABC for four minutes. The defects were studied by histomorphometry and electron microscopy at one, three and six months. At one month, untreated lesions were covered to a mean extent of 28% by repair cells; this was enhanced to a mean of 53% after enzyme treatment. By three months, the mean coverage of both control and chondroitinase-ABC-treated defects had diminished dramatically to 0.2% and 13%, respectively, but at six months both untreated and treated lesions had a similar coverage of about 30%, not significantly different from that achieved in untreated knees at one month. These findings suggest that, with time, chondrocytes near the surface of the defect may compensate for the loss of proteoglycans produced by enzyme treatment, thereby restoring the inhibitory properties of the matrix as regards cell adhesion. This supposition was confirmed by electron microscopy. Our results have an important bearing on attempts made to induce healing responses by transplanting chondrogenic cells or by applying growth factors


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 416 - 420
1 Mar 2005
Bobyn JD Hacking SA Krygier JJ Harvey EJ Little DG Tanzer M

The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 989 - 994
1 Jul 2014
Ozturk AM Ergun MA Demir T Gungor I Yilmaz A Kaya K

Ketamine has been used in combination with a variety of other agents for intra-articular analgesia, with promising results. However, although it has been shown to be toxic to various types of cell, there is no available information on the effects of ketamine on chondrocytes. We conducted a prospective randomised controlled study to evaluate the effects of ketamine on cultured chondrocytes isolated from rat articular cartilage. The cultured cells were treated with 0.125 mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for 6 h, 24 hours and 48 hours, and compared with controls. Changes of apoptosis were evaluated using fluorescence microscopy with a 490 nm excitation wavelength. Apoptosis and eventual necrosis were seen at each concentration. The percentage viability of the cells was inversely proportional to both the duration and dose of treatment (p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely toxic. We concluded that in the absence of solid data to support the efficacy of intra-articular ketamine for the control of pain, and the toxic effects of ketamine on cultured chondrocytes shown by this study, intra-articular ketamine, either alone or in combination with other agents, should not be used to control pain. Cite this article: Bone Joint J 2014; 96-B:989–94


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1184 - 1188
1 Nov 2002
Bushell AJ Klenerman L Taylor S Davies H Grierson I Helliwell TR Jackson MJ

Ischaemic preconditioning is a process by which exposure of a tissue to a short period of non-damaging ischaemic stress leads to resistance to the deleterious effects of a subsequent prolonged ischaemic stress. It has been extensively described in the heart, but few studies have examined the possibility that it can occur in skeletal muscle. We have used a rat model of ischaemia of one limb to examine this possibility. Exposure of the hind limb to a period of ischaemia of five minutes and reperfusion for five minutes significantly protected the tibialis anterior muscle against the structural damage induced by a subsequent period of limb ischaemia for four hours and reperfusion for one hour. This protection was evident on examination of the muscle by both light and electron microscopy. Longer or shorter times of prior ischaemia had no effect


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 1064 - 1068
1 Nov 1999
Richardson JB Caterson B Evans EH Ashton BA Roberts S

Tissue engineering is an increasingly popular method of addressing pathological disorders of cartilage. Recent studies have demonstrated its clinical efficacy, but there is little information on the structural organisation and biochemical composition of the repair tissue and its relation to the adjacent normal tissue. We therefore analysed by polarised light microscopy and immunohistochemistry biopsies of repair tissue which had been taken 12 months after implantation of autologous chondrocytes in two patients with defects of articular cartilage. Our findings showed zonal heterogeneity throughout the repair tissue. The deeper zone resembled hyaline-like articular cartilage whereas the upper zone was more fibrocartilaginous. The results indicate that within 12 months autologous chondrocyte implantation successfully produces replacement cartilage tissue, a major part of which resembles normal hyaline cartilage


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 522 - 530
1 May 1999
Santander RG Arriba MAP Cuadrado GM Alonso AL Martinez MG Alonso FJM Monteagudo M Lobo MVT

We have studied the formation of collagen fibrils in ‘activated fibroblasts’ of tendo Achillis of rabbits. The tendon was in the process of regeneration after experimental partial tenotomy. Samples were taken from the peri-incisional region and analysed by transmission electron microscopy. Ultrastructural examination showed the presence of a ‘fine dense granular substance’ inside the rough endoplasmic reticulum and procollagen filaments. These come together to form collagen fibrils in the dilated vacuoles of the rough endoplasmic reticulum. The possible intra- and extracellular origin of collagen fibrils is suggested. Within the cell biosynthesis of collagen fibrils take place with the formation of collagen substance which gives rise to procollagen filaments. These make contact in parallel apposition to produce striated ‘spindle-shaped bodies’ which elongate by the longitudinal attachment of more procollagen filaments and form intracellular nascent collagen fibrils


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 915 - 920
1 Sep 1999
Sckell A Leunig M Fraitzl CR Ganz R Ballmer FT

Free patellar tendon grafts used for the intra-articular replacement of ruptured anterior cruciate ligaments (ACL) lack perfusion at the time of implantation. The central core of the graft undergoes a process of ischaemic necrosis which may result in failure. Early reperfusion of the graft may diminish the extent of this process. We assessed the role of peritendinous connective tissue in the revascularisation of the patellar tendon graft from the day of implantation up to 24 days in a murine model using intravital microscopy. The peritendinous connective-tissue envelope of the graft was either completely removed, partially removed or not stripped before implantation into dorsal skinfold chambers of recipient mice. Initial revascularisation of the grafts with preserved peritendinous connective tissues began after two days. The process was delayed by five to six times in completely stripped patellar tendons (p < 0.05). Only grafts with preserved connective tissues showed high viability whereas those which were completely stripped appeared to be subvital. The presence of peritendinous connective tissues accelerates the revascularisation of free patellar tendon grafts


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 849 - 856
1 Sep 1997
Wang W Ferguson DJP Quinn JMW Simpson AHRW Athanasou NA

Abundant implant-derived biomaterial wear particles are generated in aseptic loosening and are deposited in periprosthetic tissues in which they are phagocytosed by mononuclear and multinucleated macrophage-like cells. It has been stated that the multinucleated cells which contain wear particles are not bone-resorbing osteoclasts. To investigate the validity of this claim we isolated human osteoclasts from giant-cell tumours of bone and rat osteoclasts from long bones. These were cultured on glass coverslips and on cortical bone slices in the presence of particles of latex, PMMA and titanium. Osteoclast phagocytosis of these particle types was shown by light microscopy, energy-dispersive X-ray analysis and SEM. Giant cells containing phagocytosed particles were seen to be associated with the formation of resorption lacunae. Osteoclasts containing particles were also calcitonin-receptor-positive and showed an inhibitory response to calcitonin. Our findings demonstrate that osteoclasts are capable of phagocytosing particles of a wide range of size, including particles of polymeric and metallic bio-materials found in periprosthetic tissues, and that after particle phagocytosis, they remain fully functional, hormone-responsive, bone-resorbing cells


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1182 - 1189
1 Nov 2003
Hacking SA Harvey EJ Tanzer M Krygier JJ Bobyn JD

We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an implant surface. The acid etching process developed for this study represents a simple method for enhancing the potential of commonly available porous coatings for biological fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 133 - 141
1 Jan 2003
Kraft CN Diedrich O Burian B Schmitt O Wimmer MA

Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 126 - 132
1 Jan 2003
Mittlmeier T Vollmar B Menger MD Schewior L Raschke M Schaser K

A major pathway of closed soft-tissue injury is failure of microvascular perfusion combined with a persistently enhanced inflammatory response. We therefore tested the hypothesis that hypertonic hydroxyethyl starch (HS/HES) effectively restores microcirculation and reduces leukocyte adherence after closed soft-tissue injury. We induced closed soft-tissue injury in the hindlimbs of 14 male isoflurane-anaesthetised rats. Seven traumatised animals received 7.5% sodium chloride-6% HS/HES and seven isovolaemic 0.9% saline (NS). Six non-injured animals did not receive any additional fluid and acted as a control group. The microcirculation of the extensor digitorum longus muscle (EDL) was quantitatively analysed two hours after trauma using intravital microscopy and laser Doppler flowmetry, i.e. erythrocyte flux. Oedema was assessed by the wet-to-dry-weight ratio of the EDL. In NS-treated animals closed soft-tissue injury resulted in massive reduction of functional capillary density (FCD) and a marked increase in microvascular permeability and leukocyte-endothelial cell interaction as compared with the control group. By contrast, HS/HES was effective in restoring the FCD to 94% of values found in the control group. In addition, leukocyte rolling decreased almost to control levels and leukocyte adherence was found to be reduced by ~50%. Erythrocyte flux in NS-treated animals decreased to 90 ± 8% (mean . sem. ), whereas values in the HS/HES group significantly increased to 137 ± 3% compared with the baseline flux. Oedema in the HS/HES group (1.06 ± 0.02) was significantly decreased compared with the NS-group (1.12 ± 0.01). HS/HES effectively restores nutritive perfusion, decreases leukocyte adherence, improves endothelial integrity and attenuates oedema, thereby restricting tissue damage evolving secondary to closed soft-tissue injury. It appears to be an effective intervention, supporting nutritional blood flow by reducing trauma-induced microvascular dysfunction


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 918 - 923
1 Sep 1998
Bruns J Kahrs J Kampen J Behrens P Plitz W

Our aim was to examine the potential of autologous perichondral tissue to form a meniscal replacement. In 18 mature sheep we performed a complete medial meniscectomy. The animals were then divided into two groups: 12 had a meniscal replacement using strips of autologous perichondral tissue explanted from the lower rib (group G) and six (group C) served as a control group without a meniscal replacement. In all animals restriction from weight-bearing was achieved by means of transection and partial resection of tendo Achillis. Six animals (four from group G and two from group C) were each killed at 3, 6 and 12 months. The grafts and the underlying articular cartilage were removed and studied by gross macroscopic examination, light microscopy, SEM, polarised light examination, and by biomechanical tests. In all the transplanted animals a new perichondral meniscus developed. After three months the transplants resembled normal menisci in size and thickness, while in the control animals only small rims of spontaneously grown tissue were seen. Microscopically, the perichondral menisci showed a normal orientation of collagen fibres and normal cellular characteristics, but in the central region, areas of calcification disturbed the regular tissue differentiation. Healing tissue in control animals lacked the normal fibre orientation and cellularity. SEM of perichondral menisci showed surface characteristics similar to those of normal sheep menisci without fissures and lacerations; the control specimens had these defects. The femoral and tibial cartilage in contact with the new menisci had normal surface characteristics apart from one animal with slight surface irregularities. Control animals showed superficial lesions after three months which increased at six to 12 months postoperatively. Microangiography of the newly grown tissue demonstrated a less intense vascularisation after three months when compared with normal menisci. The failure stress and tensile modulus of perichondral menisci were significantly lower than those of normal contralateral menisci, and spontaneously regenerated tissue in meniscectomised animals had even lower values. There were no significant differences in values between newly grown perichondral menisci and spontaneously grown tissue