header advert
Results 1 - 20 of 217
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims. The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). Methods. At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays. Results. A total of 114 explanted fixed-bearing TKAs were examined. This included 76 used with contemporary PE inserts which were compared with 15 used with older generation PEs. The Attune and NexGen (central locking) trays were found to have significantly less cement cover than Triathlon and PFC trays (peripheral locking group) (p = 0.001). The median planicity values of the PE inserts used with central locking trays were significantly greater than of those with peripheral locking inserts (205 vs 85 microns; p < 0.001). Attune and NexGen inserts had a characteristic pattern of backside deformation, with the outer edges of the PE deviating inferiorly, leaving the PE margins as the primary areas of articulation. Conclusion. Explanted TKAs with central locking mechanisms were significantly more likely to debond from the cement mantle. The PE inserts of these designs showed characteristic patterns of deformation, which appeared to relate to the manufacturing process and may be exacerbated in vivo. This pattern of deformation was associated with PE wear occurring at the outer edges of the articulation, potentially increasing the frictional torque generated at this interface. Cite this article: Bone Joint J 2021;103-B(12):1791–1801


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 620 - 624
1 Aug 1986
James J Steijn-Myagkaya G

Ischaemia kills osteocytes, but opinions differ as to how long they can survive. These differences are due to the varying methods of inducing ischaemia, and to the different criteria for diagnosing cell death. Using rabbit bone and a technique of in vitro ischaemia at 37 degrees C, we have shown by electron microscopy that, after up to two hours, the changes which occur are probably reversible; after four hours, the cells were irreversibly damaged. This difference could not be detected by light microscopy. After 24 hours of ischaemia, most lacunae were empty or contained only osteocyte debris. We conclude that osteocytes suffer irreversible damage after in vitro ischaemia of about two hours, which is much the same response as that of most other mammalian cells


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims. The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Methods. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces. Results. All animals tolerated surgery well, with preservation of gait mechanics and weightbearing in control individuals. Postoperative in vivo imaging demonstrated predictable evolution of infection with logarithmic signal decay coinciding with abscess formation. Postmortem mCT qualitative volumetric analysis showed high contact area and both cement-bone and cement-implant interdigitation. FE-SEM revealed biofilm formation on the prosthetic head. Conclusion. This study demonstrates the utility of a new, high-fidelity model of in vivo PJI using cemented hip hemiarthroplasty in rats. Inoculation with bioluminescent bacteria allows for non-invasive, real-time monitoring of infection. Cite this article: Bone Joint J 2021;103-B(7 Supple B):9–16


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1238 - 1246
1 Jul 2021
Hemmerling KJ Weitzler L Bauer TW Padgett DE Wright TM

Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the modular liner-shell connection. We sought to examine fretting and corrosion on MDM liners, to analyze the corrosion products, and to examine histologically the periprosthetic tissues. Methods. A total of 60 retrieved liners were subjectively scored for fretting and corrosion. The corrosion products from the three most severely corroded implants were removed from the implant surface, imaged using scanning electron microscopy, and analyzed using Fourier-transform infrared spectroscopy. Results. Fretting was present on 88% (53/60) of the retrieved liners, and corrosion was present on 97% (58/60). Fretting was most often found on the lip of the taper at the transition between the lip and the dome regions. Macrophages and particles reflecting an innate inflammatory reaction to corrosion debris were noted in six of the 48 cases for which periprosthetic tissues were examined, and all were associated with retrieved components that had high corrosion scores. Conclusion. Our results show that corrosion occurs at the interface between MDM liners and shells and that it can be associated with reactions in the local tissues, suggesting continued concern that this problem may become clinically important with longer-term use of these implants. Cite this article: Bone Joint J 2021;103-B(7):1238–1246


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1527 - 1534
3 Nov 2020
Orita K Minoda Y Sugama R Ohta Y Ueyama H Takemura S Nakamura H

Aims. Vitamin E-infused highly cross-linked polyethylene (E1) has recently been introduced in total knee arthroplasty (TKA). An in vitro wear simulator study showed that E1 reduced polyethylene wear. However there is no published information regarding in vivo wear. Previous reports suggest that newly introduced materials which reduce in vitro polyethylene wear do not necessarily reduce in vivo polyethylene wear. To assist in the evaluation of the newly introduced material before widespread use, we established an in vivo polyethylene wear particle analysis for TKA. The aim of this study was to compare in vivo polyethylene wear particle generation between E1 and conventional polyethylene (ArCom) in TKA. Methods. A total of 34 knees undergoing TKA (17 each with ArCom or E1) were investigated. Except for the polyethylene insert material, the prostheses used for both groups were identical. Synovial fluid was obtained at a mean of 3.4 years (SD 1.3) postoperatively. The in vivo polyethylene wear particles were isolated from the synovial fluid using a previously validated method and examined by scanning electron microscopy. Results. The total number of polyethylene wear particles obtained from the knees with E1 (mean 6.9, SD 4.0 × 10. 7. counts/knee) was greater than that obtained from those with ArCom (mean 2.2, SD 2.6 × 10. 7. counts/knee) (p = 0.001). The particle size (equivalent circle of diameter) from the knees with E1 was smaller (mean 0.5 μm, SD 0.1) than that of knees with ArCom (mean 1.5, SD 0.3 μm) (p = 0.001). The aspect ratio of particles from the knees with E1 (mean 1.3, SD 0.1) was smaller than that with ArCom (mean 1.4, SD 0.1) (p < 0.001 ). Conclusion. This is the first report of in vivo wear particle analysis of E1. E1 polyethylene did not reduce the number of in vivo polyethylene wear particles compared with ArCom in early clinical stage. Further careful follow-up of newly introduced E1 for TKA should be carried out. Cite this article: Bone Joint J 2020;102-B(11):1527–1534


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 1 | Pages 114 - 121
1 Jan 2008
Pendegrass CJ Gordon D Middleton CA Sun SNM Blunn GW

Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography in vitro. We used immunolocalisation of adhesion complex components, scanning electron microscopy and transmission electron microscopy to assess cell parameters. We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment in vivo, producing an effective barrier of infection


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis. All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1193 - 1195
1 Nov 2022
Rajput V Meek RMD Haddad FS

Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area.

Cite this article: Bone Joint J 2022;104-B(11):1193–1195.


The Journal of Bone & Joint Surgery British Volume
Vol. 53-B, Issue 4 | Pages 732 - 750
1 Nov 1971
Clarke IC

1. The fibrillar networks of adult human articular cartilage, taken from femoral and acetabular specimens, have been systematically examined by scanning electron microscopy. The internal structures revealed by rupturing the tissue were compared with published findings from transmission electron microscope studies. 2. Though this technique demonstrated the internal fibrillar appearance of cartilage to a remarkable degree, it had several attendant limitations. On final drying, specimens generally exhibited shrinkage which varied within wide limits; this could have altered the internal architecture to some extent. In addition, the rupturing technique, which at the time of this investigation was the only satisfactory method of revealing the fibrillar cartilage structure, may well have had a great influence on the fibril orientations. 3. The fibrils revealed no characteristic collagen periodicity and were considerably thicker than those observed by transmission electron microscopy. It is suggested that a coating of mucin on the collagen fibrils might account for this. 4. At low magnifications the torn layers in the fractured surfaces extended radially from the calcified zone and turned obliquely at or near the articular surface to merge with the distinctly layered superficial zone, thus forming arcade-like structures. That these were not artefacts produced by the fracturing technique was shown by their similarity to the classical arcade pattern of light microscopy. However, the factor which governed the direction of these planes of weakness, be it collagen, mucopolysaccharides or cells, could not be satisfactorily determined. 5. At higher magnifications only three regions of distinct fibrillar organisation could be identified: 1) a surface layer consisting of a random fibrillar network; 2) a superficial zone composed of layers of fibrillar network, intersecting and overlapping in planes parallel to the surface; and 3) elsewhere below the superficial zone a network of virtually random fibrils which extended to the calcified region with apparently little variation in thickness or density. There was little variation from this pattern even in aged fibrillated specimens. 6. At the lower magnification range the scanning electron microscope has revealed the arcade pattern described by light microscopy, while at the higher magnifications the fibrillar organisation as seen by scanning electron microscopy correlated well with the concepts developed by transmission electron microscopy, that is, a random network of fibrils overlaid at the articular surface by a membrane-like system of bundled fibrils. 7. A possible role in the transmission of joint forces is outlined for the above fibrillar organisation


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 99 - 106
1 Jan 2024
Khal AA Aiba H Righi A Gambarotti M Atherley O'Meally AO Manfrini M Donati DM Errani C

Aims

Low-grade central osteosarcoma (LGCOS), a rare type of osteosarcoma, often has misleading radiological and pathological features that overlap with those of other bone tumours, thereby complicating diagnosis and treatment. We aimed to analyze the clinical, radiological, and pathological features of patients with LGCOS, with a focus on diagnosis, treatment, and outcomes.

Methods

We retrospectively analyzed the medical records of 49 patients with LGCOS (Broder’s grade 1 to 2) treated between January 1985 and December 2017 in a single institute. We examined the presence of malignant features on imaging (periosteal reaction, cortical destruction, soft-tissue invasion), the diagnostic accuracy of biopsy, surgical treatment, and oncological outcome.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1132 - 1137
1 Aug 2016
Lawendy A Bihari A Sanders DW Badhwar A Cepinskas G

Aims. Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs. Methods. Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy. Results. We found that hepatocellular injury was significantly higher in the compartment syndrome group (192 PI-labelled cells/10. -1 . mm. 3. , standard error of the mean (. sem. ) 51) compared with controls (30 PI-labelled cells/10. -1 . mm. 3. , . sem . 12, p < 0.01). The number of adherent venular white blood cells was significantly higher for the compartment syndrome group (5 leukocytes/30s/10 000 μm. 2. , . sem 1. ) than controls (0.2 leukocytes/30 s/10 000 μm. 2. , . sem . 0.2, p < 0.01). Volumetric blood flow was not significantly different between the two groups, although there was an increase in the heterogeneity of perfusion. Conclusions. Compartment syndrome can be accompanied by severe systemic inflammation and end organ damage. This study provides evidence of the relationship between compartment syndrome in a limb and systemic inflammation and dysfunction in a remote organ. Cite this article: Bone Joint J 2016; 98-B:1132–7


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 1 | Pages 60 - 67
1 Jan 1994
Shanbhag A Jacobs J Glant T Gilbert J Black J Galante J

Interfacial membranes collected at revision from 11 failed uncemented Ti-alloy total hip replacements were examined. Particles in the membranes were characterised by electron microscopy, microchemical spectroscopy and particle size analysis. Most were polyethylene and had a mean size of 0.53 micron +/- 0.3. They were similar to the particles seen in the base resin used in the manufacture of the acetabular implants. Relatively few titanium particles were seen. Fragments of bone, stainless steel and silicate were found in small amounts. Most of the polyethylene particles were too small to be seen by light microscopy. Electron microscopy and spectroscopic techniques are required to provide an accurate description of this debris


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 814 - 820
1 Jun 2008
Chu CR Izzo NJ Coyle CH Papas NE Logar A

We have studied the effects of bupivacaine on human and bovine articular chondrocytes in vitro. Time-lapse confocal microscopy of human articular chondrocytes showed > 95% cellular death after exposure to 0.5% bupivacaine for 30 minutes. Human and bovine chondrocytes exposed to 0.25% bupivacaine had a time-dependent reduction in viability, with longer exposure times resulting in higher cytotoxicity. Cellular death continued even after removal of 0.25% bupivacaine. After exposure to 0.25% bupivacaine for 15 minutes, flow cytometry showed bovine chondrocyte viability to be 41% of saline control after seven days. After exposure to 0.125% bupivacaine for up to 60 minutes, the viability of both bovine and human chondrocytes was similar to that of control groups. These data show that prolonged exposure 0.5% and 0.25% bupivacaine solutions are potentially chondrotoxic


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 2 | Pages 277 - 284
1 Feb 2011
Amin AK Huntley JS Patton JT Brenkel IJ Simpson AHRW Hall AC

The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces in situ chondrocyte death following a standardised mechanical injury produced by a scalpel cut compared with the same assault and exposure to normal saline (0.9%, 285 mOsm). Human cartilage explants were exposed to normal (control) and hyperosmotic 0.9% saline solutions for five minutes before the mechanical injury to allow in situ chondrocytes to respond to the altered osmotic environment, and incubated for a further 2.5 hours in the same solutions following the mechanical injury. Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1541 - 1547
1 Dec 2008
Bush PG Hall AC Macnicol MF

The mammalian growth plate is a complex structure which is essential for the elongation of long bones. However, an understanding of how the growth plate functions at the cellular level is lacking. This review, summarises the factors involved in growth-plate regulation, its failure and the consequence of injury. We also describe some of the cellular mechanisms which underpin the increase in volume of the growth-plate chondrocyte which is the major determinant of the rate and extent of bone lengthening. We show how living in situ chondrocytes can be imaged using 2-photon laser scanning microscopy to provide a quantitative analysis of their volume. This approach should give better understanding of the cellular control of bone growth in both healthy and failed growth plates


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 604 - 611
1 May 2009
Reay E Wu J Holland J Deehan D

We describe a cohort of patients with a high rate of mid-term failure following Kinemax Plus total knee replacement inserted between 1998 and 2001. This implant has been recorded as having a survival rate of 96% at ten years. However, in our series the survival rate was 75% at nine years. This was also significantly lower than that of subsequent consecutive series of PFC Sigma knee replacements performed by the same surgeon. No differences were found in the clinical and radiological parameters between the two groups. At revision the most striking finding was polyethylene wear. An independent analysis of the polyethylene components was therefore undertaken. Scanning electron microscopy revealed type 2 fusion defects in the ultra-high molecular weight polyethylene (UHMWPE), which indicated incomplete boundary fusion. Other abnormalities consistent with weak UHMWPE particle interface strength were present in both the explanted inserts and in unused inserts from the same period. We consider that these type 2 fusion defects are the cause of the early failure of the Kinemax implants. This may represent a manufacturing defect resulting in a form of programmed polyethylene failure


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 9 | Pages 1306 - 1311
1 Sep 2010
Patten EW Atwood SA Van Citters DW Jewett BA Pruitt LA Ries MD

Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 μm to 4.3 μm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage. This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1106 - 1113
1 Aug 2008
Richards L Brown C Stone MH Fisher J Ingham E Tipper JL

Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated in vivo. A randomised method of analysis was used to quantify and characterise all the polyethylene particles isolated. We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 691 - 699
1 May 2009
Amin AK Huntley JS Simpson AHRW Hall AC

The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p < 0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p > 0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone


The Bone & Joint Journal
Vol. 95-B, Issue 8 | Pages 1127 - 1133
1 Aug 2013
Lama P Le Maitre CL Dolan P Tarlton JF Harding IJ Adams MA

The belief that an intervertebral disc must degenerate before it can herniate has clinical and medicolegal significance, but lacks scientific validity. We hypothesised that tissue changes in herniated discs differ from those in discs that degenerate without herniation. Tissues were obtained at surgery from 21 herniated discs and 11 non-herniated discs of similar degeneration as assessed by the Pfirrmann grade. Thin sections were graded histologically, and certain features were quantified using immunofluorescence combined with confocal microscopy and image analysis. Herniated and degenerated tissues were compared separately for each tissue type: nucleus, inner annulus and outer annulus. Herniated tissues showed significantly greater proteoglycan loss (outer annulus), neovascularisation (annulus), innervation (annulus), cellularity/inflammation (annulus) and expression of matrix-degrading enzymes (inner annulus) than degenerated discs. No significant differences were seen in the nucleus tissue from herniated and degenerated discs. Degenerative changes start in the nucleus, so it seems unlikely that advanced degeneration caused herniation in 21 of these 32 discs. On the contrary, specific changes in the annulus can be interpreted as the consequences of herniation, when disruption allows local swelling, proteoglycan loss, and the ingrowth of blood vessels, nerves and inflammatory cells. In conclusion, it should not be assumed that degenerative changes always precede disc herniation. Cite this article: Bone Joint J 2013;95-B:1127–33