Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 101 - 106
1 Jun 2020
Shah RF Bini SA Martinez AM Pedoia V Vail TP

Aims. The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance. Methods. A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset. Results. The convolutional neural network we built performed well when detecting loosening from radiographs alone. The first model built de novo with only the radiological image as input had an accuracy of 70%. The final model, which was built by fine-tuning a publicly available model named DenseNet, combining the AP and lateral radiographs, and incorporating information from the patient’s history, had an accuracy, sensitivity, and specificity of 88.3%, 70.2%, and 95.6% on the independent test dataset. It performed better for cases of revision THA with an accuracy of 90.1%, than for cases of revision TKA with an accuracy of 85.8%. Conclusion. This study showed that machine learning can detect prosthetic loosening from radiographs. Its accuracy is enhanced when using highly trained public algorithms, and when adding clinical data to the algorithm. While this algorithm may not be sufficient in its present state of development as a standalone metric of loosening, it is currently a useful augment for clinical decision making. Cite this article: Bone Joint J 2020;102-B(6 Supple A):101–106


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1358 - 1366
2 Aug 2021
Wei C Quan T Wang KY Gu A Fassihi SC Kahlenberg CA Malahias M Liu J Thakkar S Gonzalez Della Valle A Sculco PK

Aims. This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA). Methods. Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional machine-learning algorithm. Variables collected from 28,742 patients were analyzed based on their contribution to hospital length of stay. Results. The predictability of the ANN model, area under the curve (AUC) = 0.801, was similar to the logistic regression model (AUC = 0.796) and identified certain variables as important factors to predict same-day discharge. The ten most important factors favouring same-day discharge in the ANN model include preoperative sodium, preoperative international normalized ratio, BMI, age, anaesthesia type, operating time, dyspnoea status, functional status, race, anaemia status, and chronic obstructive pulmonary disease (COPD). Six of these variables were also found to be significant on logistic regression analysis. Conclusion. Both ANN modelling and logistic regression analysis revealed clinically important factors in predicting patients who can undergo safely undergo same-day discharge from an outpatient TKA. The ANN model provides a beneficial approach to help determine which perioperative factors can predict same-day discharge as of 2018 perioperative recovery protocols. Cite this article: Bone Joint J 2021;103-B(8):1358–1366


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 16 - 21
1 Oct 2016
Jones GG Kotti M Wiik AV Collins R Brevadt MJ Strachan RK Cobb JP

Aims. To compare the gait of unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) patients with healthy controls, using a machine-learning approach. Patients and Methods. 145 participants (121 healthy controls, 12 patients with cruciate-retaining TKA, and 12 with mobile-bearing medial UKA) were recruited. The TKA and UKA patients were a minimum of 12 months post-operative, and matched for pattern and severity of arthrosis, age, and body mass index. . Participants walked on an instrumented treadmill until their maximum walking speed was reached. Temporospatial gait parameters, and vertical ground reaction force data, were captured at each speed. Oxford knee scores (OKS) were also collected. An ensemble of trees algorithm was used to analyse the data: 27 gait variables were used to train classification trees for each speed, with a binary output prediction of whether these variables were derived from a UKA or TKA patient. Healthy control gait data was then tested by the decision trees at each speed and a final classification (UKA or TKA) reached for each subject in a majority voting manner over all gait cycles and speeds. Top walking speed was also recorded. Results. 92% of the healthy controls were classified by the decision tree as a UKA, 5% as a TKA, and 3% were unclassified. There was no significant difference in OKS between the UKA and TKA patients (p = 0.077). Top walking speed in TKA patients (1.6 m/s; 1.3 to 2.1) was significantly lower than that of both the UKA group (2.2 m/s; 1.8 to 2.7) and healthy controls (2.2 m/s; 1.5 to 2.7; p < 0.001). . Conclusion. UKA results in a more physiological gait compared with TKA, and a higher top walking speed. This difference in function was not detected by the OKS. Cite this article: Bone Joint J 2016;98-B(10 Suppl B):16–21


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims

The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs).

Methods

At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1183 - 1193
14 Sep 2020
Anis HK Strnad GJ Klika AK Zajichek A Spindler KP Barsoum WK Higuera CA Piuzzi NS

Aims

The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors.

Methods

Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with root mean square errors (RMSEs) and mean absolute errors (MAEs) for the LOS and PROMs models, and the index of prediction accuracy (IPA), and area under the curve (AUC) for the readmission models. Model accuracies in new patient data sets were assessed with AUC.