To determine the normal values and usefulness of the C1/4 space
available for spinal cord (SAC) ratio and C1 inclination angle,
which are new radiological parameters for assessing atlantoaxial
instability in children with Down syndrome. We recruited 272 children with Down syndrome (including 14 who
underwent surgical treatment), and 141 children in the control group.
All were aged between two and 11 years. The C1/4 SAC ratio, C1 inclination
angle, atlas-dens interval (ADI), and SAC were measured in those
with Down syndrome, and the C1/4 SAC ratio and C1 inclination angle
were measured in the control group.Aims
Patients and Methods
Permanent growth arrest of the longer bone is
an option in the treatment of minor leg-length discrepancies. The
use of a tension band plating technique to produce a temporary epiphysiodesis
is appealing as it avoids the need for accurate timing of the procedure
in relation to remaining growth. We performed an animal study to
establish if control of growth in a long bone is possible with tension
band plating. Animals (pigs) were randomised to temporary epiphysiodesis
on either the right or left tibia. Implants were removed after ten
weeks. Both tibiae were examined using MRI at baseline, and after
ten and 15 weeks. The median interphyseal distance was significantly shorter
on the treated tibiae after both ten weeks (p = 0.04) and 15 weeks
(p = 0.04). On T1-weighted images the metaphyseal water
content was significantly reduced after ten weeks on the treated
side (p = 0.04) but returned to values comparable with the untreated
side at 15 weeks (p = 0.14). Return of growth was observed in all
animals after removal of implants. Temporary epiphysiodesis can be obtained using tension band plating.
The technique is not yet in common clinical practice but might avoid
the need for the accurate timing of epiphysiodesis. Cite this article:
The bicompartmental acetabulum is one of the morphological changes which may be seen in children with Legg-Calvé-Perthes’ disease. Three-dimensional CT and MRI were used to analyse the detailed morphology of the acetabulum with special reference to its inner surface, in 16 patients with Perthes’ disease and a bicompartmental acetabulum. The bicompartmental appearance was seen on the coronal plane image through the acetabular fossa. The lunate surface was seen to grow laterally resulting in an increased mediolateral thickness of the triradiate cartilage. On the horizontal plane images, the acetabular fossa had deepened and had a distinct prominence at its posterior border. The combination of these morphological changes resulted in a bicompartmental appearance on plain radiography. Acetabular bicompartmentalisation appears to be the result of an imbalance of growth between the cartilage-covered lunate surface and the cartilage-devoid acetabular fossa.