Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 3 | Pages 467 - 474
1 May 1997
Hukkanen M Corbett SA Batten J Konttinen YT McCarthy ID Maclouf J Santavirta S Hughes SPF Polak JM

Aseptic loosening is a major cause of failure of total hip arthroplasty. The adverse tissue response to prosthetic wear particles, with activation of cytokine and prostanoid production, contributes to bone loss around the implants. We have investigated the possibility that inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) are expressed in macrophages in the pseudomembrane at the bone-implant interface, thereby contributing to the periprosthetic bone resorption.

We also assessed whether peroxynitrite, a nitric oxide (NO)-derived oxidant associated with cellular injury, is generated in the membrane. Enzymatic activity of iNOS was measured using the arginine-citrulline assay technique and prostaglandin E2 (PGE2), as an indicator of COX-2 activity, was measured using an enzyme immunoassay.

Cellular immunoreactivity for iNOS, nitrotyrosine (a marker of peroxynitrite-induced cellular injury) and COX-2 was assessed by quantitative peroxidase immunocytochemistry while immunofluorescence methods were used for subsequent co-localisation studies with CD68+ macrophages.

The presence of calcium-independent iNOS activity and PGE2 production was confirmed in the homogenized interface membrane. Immunocytochemistry showed that periprosthetic CD68+ wear-debris-laden macrophages were the most prominent cell type immunoreactive for iNOS, nitrotyrosine and COX-2. Other periprosthetic inflammatory and resident cell types were also found to immunolocalise nitrotyrosine thereby suggesting peroxynitrite-induced protein nitrosylation and cellular damage not only in NO-producing CD68+ macrophages, but also in their neighbouring cells. These data indicate that both iNOS and COX-2 are expressed by CD68+ macrophages in the interface membrane and peroxynitrite-induced cellular damage is evident in such tissue. If high-output NO and peroxynitrite generation were to cause macrophage cell death, this would result in the release of phagocytosed wear debris into the extracellular matrix. A detrimental cycle of events would then be established with further phagocytosis by newly-recruited inflammatory cells and subsequent NO, peroxynitrite and prostanoid synthesis. Since both NO and have been implicated in the induction and PGE2 maintenance of chronic inflammation with resulting loss of bone, and peroxynitrite in the pathogenesis of disease states, they may be central to the pathogenesis of aseptic loosening.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1182 - 1190
1 Nov 2001
Minovic A Milosev I Pisot V Cör A Antolic V

We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO. 4. , which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation.

We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement.

Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant.