Adverse spinal motion or balance (spine mobility) and adverse pelvic mobility, in combination, are often referred to as adverse spinopelvic mobility (SPM). A stiff lumbar spine, large posterior standing pelvic tilt, and severe sagittal spinal deformity have been identified as risk factors for increased hip instability. Adverse SPM can create functional malposition of the acetabular components and hence is an instability risk. Adverse pelvic mobility is often, but not always, associated with abnormal spinal motion parameters. Dislocation rates for dual-mobility articulations (DMAs) have been reported to be between 0% and 1.1%. The aim of this study was to determine the early survivorship from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) of patients with adverse SPM who received a DMA. A multicentre study was performed using data from 227 patients undergoing primary total hip arthroplasty (THA), enrolled consecutively. All the patients who had one or more adverse spine or pelvic mobility parameter had a DMA inserted at the time of their surgery. The mean age was 76 years (22 to 93) and 63% were female (n = 145). At a mean of 14 months (5 to 31) postoperatively, the AOANJRR was analyzed for follow-up information. Reasons for revision and types of revision were identified.Aims
Methods
This study reports the ten-year wear rates, incidence of osteolysis, clinical outcomes, and complications of a multicentre randomized controlled trial comparing oxidized zirconium (OxZr) versus cobalt-chrome (CoCr) femoral heads with ultra-high molecular weight polyethylene (UHMWPE) and highly cross-linked polyethylene (XLPE) liners in total hip arthroplasty (THA). Patients undergoing primary THA were recruited from four institutions and prospectively allocated to the following treatment groups: Group A, CoCr femoral head with XLPE liner; Group B, OxZr femoral head with XLPE liner; and Group C, OxZr femoral head with UHMWPE liner. All study patients and assessors recording outcomes were blinded to the treatment groups. The outcomes of 262 study patients were analyzed at ten years’ follow-up.Aims
Methods
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
Alumina–alumina bearings are among the most resistant
to wear in total hip replacement. Examination of their surfaces
is one way of comparing damage caused by wear of hip joints simulated in
vitro to that seen in explanted bearings. The aim of this
study was to determine whether second-generation ceramic bearings
exhibited a better pattern of wear than those reported in the literature
for first-generation bearings. We considered both macro- and microscopic
findings. We found that
The rate of dislocation when traditional single bearing implants are used in revision total hip arthroplasty (THA) has been reported to be between 8% and 10%. The use of dual mobility bearings can reduce this risk to between 0.5% and 2%. Dual mobility bearings are more expensive, and it is not clear if the additional clinical benefits constitute value for money for the payers. We aimed to estimate the cost-effectiveness of dual mobility compared with single bearings for patients undergoing revision THA. We developed a Markov model to estimate the expected cost and benefits of dual mobility compared with single bearing implants in patients undergoing revision THA. The rates of revision and further revision were calculated from the National Joint Registry of England and Wales, while rates of transition from one health state to another were estimated from the literature, and the data were stratified by sex and age. Implant and healthcare costs were estimated from local procurement prices and national tariffs. Quality-adjusted life-years (QALYs) were calculated using published utility estimates for patients undergoing THA.Aims
Methods
Large femoral heads have been used with increasing
frequency over the last decade. The prime reason is likely the effect
of large heads on stability. The larger head neck ratio, combined
with the increased jump distance of larger heads result in a greater
arc of impingement free motion, and greater resistance to dislocation
in a provocative position. Multiple studies have demonstrated clear
clinical efficacy in diminishing dislocation rates with the use
of large femoral heads. With crosslinked polyethylene, wear has
been shown to be equivalent between larger and smaller heads. However,
the stability advantages of increasing diameter beyond 38 mm have
not been clearly demonstrated. More importantly, recent data implicates
large heads in the increasing prevalence of groin pain and psoas impingement.
There are clear benefits with larger femoral head diameters, but
the advantages of diameters beyond 38 mm have not yet been demonstrated
clinically.
We reviewed the literature on the currently available
choices of bearing surface in total hip replacement (THR). We present
a detailed description of the properties of articulating surfaces
review the understanding of the advantages and disadvantages of
existing bearing couples. Recent technological developments in the
field of polyethylene and ceramics have altered the risk of fracture
and the rate of wear, although the use of metal-on-metal bearings has
largely fallen out of favour, owing to concerns about reactions
to metal debris. As expected, all bearing surface combinations have
advantages and disadvantages. A patient-based approach is recommended,
balancing the risks of different options against an individual’s
functional demands. Cite this article:
Metal-on-metal bearings for total hip replacement (THR) are becoming increasingly popular. Improved wear characteristics mean that these articulations are being inserted into younger patients in the form of THR and resurfacing procedures. This has led to concerns regarding potential carcinogenicity because of the increased exposure to metal ions that the procedure brings. We have studied the serum cobalt and chromium concentrations in patients who had primary, well-fixed Ring metal-on-metal THRs for more than 30 years. The levels of cobalt and chromium were elevated by five and three times, respectively compared with those in our reference groups. Metal-on-metal articulations appear to be the source of metal ions throughout the life of the prosthesis. In three patients who had undergone revision of a previous metal-on-metal THR to a metal-on-polyethylene replacement the levels of metal ions were within the normal range. The elevations of cobalt and chromium ions seen in our study were comparable with those in patients with modern metal-on-metal THRs.