Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 33 - 39
1 Jan 2001
Dennis DA Komistek RD Walker SA Cheal EJ Stiehl JB

We carried out weight-bearing video radiological studies on 40 patients with a total knee arthroplasty (TKA), to determine the presence and magnitude of femoral condylar lift-off. Half (20) had posterior-cruciate-retaining (PCR) and half (20) posterior-cruciate-substituting (PS) prostheses. The selected patients had successful arthroplasties with no pain or instability. Each carried out successive weight-bearing knee bends to maximum flexion, and the radiological video tapes were analysed using an interactive model-fitting technique. Femoral lift-off was seen at some increment of knee flexion in 75% of patients (PCR TKA 70%; PS TKA 80%). The mean values for lift-off were 1.2 mm with a PCR TKA and 1.4 mm with a PS TKA. Lift-off occurred mostly laterally with the PCR TKA, and both medially and laterally with the PS TKA. Separation between the femoral condyles and the articular surface of the tibia was recorded at 0°, 30°, 60° and 90° of flexion. Femoral condylar lift-off may contribute to eccentric polyethylene wear, particularly in designs of TKA which have flatter condyles. Coronal conformity is an important consideration in the design of a TKA


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 779 - 787
1 Jun 2017
Kutzner I Bender A Dymke J Duda G von Roth P Bergmann G

Aims

Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities.

Patients and Methods

Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off. Results. A total of 63 patients (70 knees) were randomized to KA and 62 patients (68 knees) to MA. Mean ICPD at 10° flexion in the KA group was 11.7 psi (SD 13.1) compared with 32.0 psi in the MA group (SD 28.9), with a mean difference in ICPD between KA and MA of 20.3 psi (p < 0.001). Mean ICPD in the KA group was significantly lower than in the MA group at 45° and 90°, respectively (25.2 psi MA vs 14.8 psi KA, p = 0.004; 19.1 psi MA vs 11.7 psi KA, p < 0.002, respectively). Overall, participants in the KA group were more likely to achieve optimal knee balance (80% vs 35%; p < 0.001). Bone recuts to achieve knee balance were more likely to be required in the MA group (49% vs 9%; p < 0.001). More participants in the MA group had tibiofemoral lift-off (43% vs 13%; p < 0.001). Conclusion. This study provides persuasive evidence that restoring the constitutional alignment with KA in TKA results in a statistically significant improvement in quantitative knee balance, and further supports this technique as a viable alternative to MA. Cite this article: Bone Joint J. 2020;102-B(1):117–124


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1585 - 1593
1 Dec 2008
Henricson A Linder L Nilsson KG

We compared the performance of uncemented trabecular metal tibial components in total knee replacement with that of cemented tibial components in patients younger than 60 years over two years using radiostereophotogrammetric analysis (RSA). A total of 22 consecutive patients (mean age 53 years, 33 to 59, 26 knees) received an uncemented NexGen trabecular metal cruciate-retaining monobloc tibial component and 19 (mean 53 years, 44 to 59, 21 knees) a cemented NexGen Option cruciate-retaining modular tibial component. All the trabecular metal components migrated during the initial three months and then stabilised. The exception was external rotation, which did not stabilise until 12 months. Unlike conventional metal-backed implants which displayed a tilting migration comprising subsidence and lift-off from the tibial tray, most of the trabecular metal components showed subsidence only, probably due to the elasticity of the implant. This pattern of subsidence is regarded as being beneficial for uncemented fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1009 - 1015
1 Aug 2012
Scott CEH Biant LC

Stems improve the mechanical stability of tibial components in total knee replacement (TKR), but come at a cost of stress shielding along their length. Their advantages include resistance to shear, reduced tibial lift-off and increased stability by reducing micromotion. Longer stems may have disadvantages including stress shielding along the length of the stem with associated reduction in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic fracture and end-of-stem pain. These features make long stems unattractive in the primary TKR setting, but often desirable in revision surgery with bone loss and instability. In the revision scenario, stems are beneficial in order to convey structural stability to the construct and protect the reconstruction of bony defects. Cemented and uncemented long stemmed implants have different roles depending on the nature of the bone loss involved. This review discusses the biomechanics of the design of tibial components and stems to inform the selection of the component and the technique of implantation


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 240 - 248
1 Mar 2024
Kim SE Kwak J Ro DH Lee MC Han H

Aims

The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the mechanical axis deviation, and to find individualized targets for the redistribution of load that reflect bony alignment, joint laxity, and surgical technique.

Methods

This retrospective study analyzed 121 knees in 101 patients. Patient-reported outcome measures (PROMs) were collected preoperatively and one year postoperatively, and were analyzed according to the surgical technique (opening or closing wedge), postoperative mechanical axis deviation (deviations above and below 10% from the target), and achievement of medial joint opening (∆JLCA > 1°). Radiological parameters, including JLCA, mechanical axis deviation, and the difference in JLCA between preoperative standing and supine radiographs (JLCAPD), an indicator of medial soft-tissue laxity, were measured. Cut-off points for parameters related to achieving medial joint opening were calculated from receiver operating characteristic (ROC) curves.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims

Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology.

Methods

This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 222 - 227
1 Mar 2000
Fukuoka S Yoshida K Yamano Y

Accurate quantitative measurements of micromovement immediately after operation would be a reliable indicator of the stability of an individual component. We have therefore developed a system for measuring micromovement of the tibial component using three non-contact displacement transducers attached to the tibial cortex during total knee arthroplasty (TKA). Using this system we measured the initial stability in 31 uncemented TKAs. All the tibial components were fixed by a stem and four screws. The initial stability was defined as the amount of displacement when a load of 20 kg was applied. The mean subsidence was 60.7 μm and the mean lift-off was 103.3 μm. We also studied the migration of the tibial component using roentgen stereophotogrammetric analysis (RSA) for up to two years after operation. Most migration occurred during the first six months, after which all prostheses remained stable. We defined migration as the maximum total point motion (MTPM) at two years after operation. The mean migration was 1.29 mm at two years. Our results show that there was a significant correlation between the initial stability and migration (p < 0.05) and emphasise the importance of the initial stability of the tibial component


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims

The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery.

Methods

An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1016 - 1024
1 Aug 2020
Hasan S van Hamersveld KT Marang-van de Mheen PJ Kaptein BL Nelissen RGHH Toksvig-Larsen S

Aims

Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the migration of cementless, 3D-printed TKA to cemented TKA of a similar design up to two years of follow-up using radiostereometric analysis (RSA) known for its ability to predict aseptic loosening.

Methods

A total of 72 patients were randomized to either cementless 3D-printed or a cemented cruciate retaining TKA. RSA and clinical scores were evaluated at baseline and postoperatively at three, 12, and 24 months. A mixed model was used to analyze the repeated measurements.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 472 - 477
1 Apr 2013
Liebs T Kloos S Herzberg W Rüther W Hassenpflug J

We investigated whether an asymmetric extension gap seen on routine post-operative radiographs after primary total knee replacement (TKR) is associated with pain at three, six, 12 and 24 months’ follow-up. On radiographs of 277 patients after primary TKR we measured the distance between the tibial tray and the femoral condyle on both the medial and lateral sides. A difference was defined as an asymmetric extension gap. We considered three groups (no asymmetric gap, medial-opening and lateral-opening gap) and calculated the associations with the Western Ontario and McMaster Universities osteoarthritis index pain scores over time.

Those with an asymmetric extension gap of ≥ 1.5 mm had a significant association with pain scores at three months’ follow-up; patients with a medial-opening extension gap reported more pain and patients with a lateral-opening extension gap reported less pain (p = 0.036). This effect was still significant at six months (p = 0.044), but had lost significance by 12 months (p = 0.924). When adjusting for multiple cofounders the improvement in pain was more pronounced in patients with a lateral-opening extension gap than in those with a medial-opening extension gap at three (p = 0.037) and six months’ (p = 0.027) follow-up.

Cite this article: Bone Joint J 2013;95-B:472–7.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 640 - 646
1 May 2017
Matsumoto T Takayama K Ishida K Hayashi S Hashimoto S Kuroda R

Aims

The aim of this study was to compare the post-operative radiographic and clinical outcomes between kinematically and mechanically aligned total knee arthroplasties (TKAs).

Patients and Methods

A total of 60 TKAs (30 kinematically and 30 mechanically aligned) were performed in 60 patients with varus osteoarthritis of the knee using a navigation system. The angles of orientation of the joint line in relation to the floor, the conventional and true mechanical axis (tMA) (the line from the centre of the hip to the lowest point of the calcaneus) were compared, one year post-operatively, on single-leg and double-leg standing long leg radiographs between the groups. The range of movement and 2011 Knee Society Scores were also compared between the groups at that time.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 147 - 150
1 Nov 2012
Gustke K

Smart trials are total knee tibial trial liners with load bearing and alignment sensors that will graphically show quantitative compartment load-bearing forces and component track patterns. These values will demonstrate asymmetrical ligament balancing and misalignments with the medial retinaculum temporarily closed. Currently surgeons use feel and visual estimation of imbalance to assess soft-tissue balancing and tracking with the medial retinaculum open, which results in lower medial compartment loads and a wider anteroposterior tibial tracking pattern. The sensor trial will aid the total knee replacement surgeon in performing soft-tissue balancing by providing quantitative visual feedback of changes in forces while performing the releases incrementally. Initial experience using a smart tibial trial is presented.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 782 - 787
1 Jun 2013
Niki Y Takeda Y Udagawa K Enomoto H Toyama Y Suda Y

We investigated the characteristics of patients who achieved Japanese-style deep flexion (seiza-sitting) after total knee replacement (TKR) and measured three-dimensional positioning and the contact positions of the femoral and tibial components. Seiza-sitting was achieved after surgery by 23 patients (29 knees) of a series of 463 TKRs in 341 patients. Pre-operatively most of these patients were capable of seiza-sitting, had a lower body mass index and a favourable attitude towards the Japanese lifestyle (27 of 29 knees). According to two-/three-dimensional image registration analysis in the seiza-sitting position, flexion, varus and internal rotation angles of the tibial component relative to the femoral component had means of 148° (sd 8.0), 1.9° (sd 3.2) and 13.4° (sd 5.9), respectively. Femoral surface contact positions tended to be close to the posterior edge of the tibial polyethylene insert, particularly in the lateral compartment, but only 8.3% (two of 24) of knees showed femoral subluxation over the posterior edge. The mean contact positions of the femoral cam on the tibial post were located 7.8 mm (sd 1.5) proximal to the lowest point of the polyethylene surface and 5.5 mm (sd 0.9) medial to the centre of the post, indicating that the post-cam contact position translated medially during seiza-sitting, but not proximally. Collectively, the seiza-sitting position seems safe against component dislocation, but the risks of posterior edge loading and breakage of the tibial polyethylene post remain.

Cite this article: Bone Joint J 2013;95-B:782–7.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 295 - 300
1 Mar 2013
Cawley DT Kelly N McGarry JP Shannon FJ

The optimum cementing technique for the tibial component in cemented primary total knee replacement (TKR) remains controversial. The technique of cementing, the volume of cement and the penetration are largely dependent on the operator, and hence large variations can occur. Clinical, experimental and computational studies have been performed, with conflicting results. Early implant migration is an indication of loosening. Aseptic loosening is the most common cause of failure in primary TKR and is the product of several factors. Sufficient penetration of cement has been shown to increase implant stability.

This review discusses the relevant literature regarding all aspects of the cementing of the tibial component at primary TKR.

Cite this article: Bone Joint J 2013;95-B:295–300.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1594 - 1596
1 Dec 2008
Dalury DF Barrett WP Mason JB Goldstein WM Murphy JA Roche MW

This retrospective study evaluated the midterm clinical and radiographic outcomes of a second-generation total knee replacement system. In a multicentre consecutive series of 1512 patients, 1970 knees were treated with the PFC Sigma knee system (Depuy, Warsaw, Indiana). The patients were reviewed for functional outcome, and underwent independent radiographic evaluation at a mean follow-up of 7.3 years (5 to 10). A total of 40 knees (2%) required revision, 17 (0.9%) for infection. The incidence of osteolysis was 2.2%. The ten-year survival with revision for any cause other than infection as the endpoint was 97.2% (95% CI 95.4 to 99.1).

The PFC Sigma knee system appears to provide excellent results in the medium term.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1457 - 1461
1 Nov 2007
Han HS Kang S Yoon KS

We have examined the results obtained with 72 NexGen legacy posterior stabilised-flex fixed total knee replacements in 47 patients implanted by a single surgeon between March 2003 and September 2004.

Aseptic loosening of the femoral component was found in 27 (38%) of the replacements at a mean follow-up of 32 months (30 to 48) and 15 knees (21%) required revision at a mean of 23 months (11 to 45). We compared the radiologically-loose and revised knees with those which had remained well-fixed to identify the factors which had contributed to this high rate of aseptic loosening.

Post-operatively, the mean maximum flexion was 136° (110° to 140°) in the loosened group and 125° (95° to 140°) in the well-fixed group (independent t-test, p = 0.022). Squatting, kneeling, or sitting cross-legged could be achieved by 23 (85%) of the loosened knees, but only 22 (49%) of the well-fixed knees (chi-squared test, p = 0.001). The loosened femoral components were found to migrate into a more flexed position, but no migration was detected in the well-fixed group.

These implants allowed a high degree of flexion, but showed a marked rate of early loosening of the femoral component, which was associated with weight-bearing in maximum flexion.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 8 | Pages 1073 - 1076
1 Aug 2005
Cross MJ Parish EN

We prospectively reviewed 1000 consecutive patients who underwent a cementless, hydroxyapatite-coated, stemless, total knee replacement over a period of nine years. Regular post-operative clinical follow-up was performed using the Knee Society score. The mean pre-operative score was 96, improving to 182 and 180 at five and ten years, respectively. To date, there have been seven (0.5%) cases which required revision, primarily for septic loosening (four cases), with low rates of other post-operative complications. The cumulative survival at ten years with revision as the end-point, was 99.14% (95% confidence interval 92.5 to 99.8). These results support the use of hydroxyapatite in a cementless total knee replacement since it can give reliable fixation with an excellent clinical and functional outcome.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1016 - 1021
1 Aug 2006
Delport HP Banks SA De Schepper J Bellemans J

Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the in vivo kinematics of this new group of implants. We investigated 31 patients who had undergone a total knee replacement with a similar prosthetic design but with three different options: fixed-bearing posterior cruciate ligament-retaining, fixed-bearing posterior-stabilised and mobile-bearing posterior-stabilised. To do this we used a three-dimensional to two-dimensional model registration technique. Both the fixed- and mobile-bearing posterior-stabilised configurations used the same femoral component. We found that fixed-bearing posterior stabilised and mobile-bearing posterior-stabilised knee replacements demonstrated similar kinematic patterns, with consistent femoral roll-back during flexion. Mobile-bearing posterior-stabilised knee replacements demonstrated greater and more natural internal rotation of the tibia during flexion than fixed-bearing posterior-stabilised designs. Such rotation occurred at the interface between the insert and tibial tray for mobile-bearing posterior-stabilised designs. However, for fixed-bearing posterior-stabilised designs, rotation occurred at the proximal surface of the bearing. Posterior cruciate ligament-retaining knee replacements demonstrated paradoxical sliding forward of the femur.

We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 656 - 663
1 May 2005
Toms AD McClelland D Chua L de Waal Malefijt M Verdonschot N Jones RS Kuiper J

Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray.

We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement.

Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.