Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Aims
Methods
Periprosthetic joint infection (PJI) complicates
between 0.5% and 1.2% primary total hip arthroplasties (THAs) and
may have devastating consequences. The traditional assessment of
patients suffering from PJI has involved the serological study of
inflammatory markers and microbiological analysis of samples obtained
from the
Treatment for osteoarthritis (OA) has traditionally
focused on joint replacement for end-stage disease. An increasing number
of surgical and pharmaceutical strategies for disease prevention
have now been proposed. However, these require the ability to identify
OA at a stage when it is potentially reversible, and detect small
changes in cartilage structure and function to enable treatment
efficacy to be evaluated within an acceptable timeframe. This has
not been possible using conventional imaging techniques but recent
advances in musculoskeletal imaging have been significant. In this
review we discuss the role of different imaging modalities in the
diagnosis of the earliest changes of OA. The increasing number of
MRI sequences that are able to non-invasively detect biochemical
changes in cartilage that precede structural damage may offer a
great advance in the diagnosis and treatment of this debilitating
condition. Cite this article:
Hyaline articular cartilage has been known to
be a troublesome tissue to repair once damaged. Since the introduction
of autologous chondrocyte implantation (ACI) in 1994, a renewed
interest in the field of cartilage repair with new repair techniques
and the hope for products that are regenerative have blossomed.
This article reviews the basic science structure and function of
articular cartilage, and techniques that are presently available
to effect repair and their expected outcomes.