We compared the use of broth culture medium for
samples taken in theatre with the standard practice of placing tissue
samples in universal containers. A total of 67 consecutive patients
had standard multiple samples of deep tissue harvested at surgery
and distributed equally in theatre either to standard universal
containers or to broth culture medium. These samples were cultured
by direct and enrichment methods. The addition of broth in theatre to
standard practice led to an increase in sensitivity from 83% to
95% and an increase in negative predictive value from 77% to 91%.
Placing tissue samples directly into broth in the operating theatre
is a simple, inexpensive way to increase the sensitivity of cultures
from infected patients, and does not appear to compromise the specificity
of these cultures. Cite this article:
Aims. Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. Methods. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 10. 5. colony-forming units (CFUs) of a bioluminescent strain of Staphylococcus aureus. The bacterial burden was monitored using bioluminescence in vivo. All mice were killed on POD 21. Implants and soft-tissue were harvested and sonicated for analysis of the CFUs. Results. The mean in vivo bioluminescence in the VB group was significantly lower on POD 8 and POD 10 compared with the other groups. There was a significant 1.3-log. 10. (95%) and 1.5-log. 10. (97%) reduction in mean soft-tissue CFUs in the VB group compared with the VP and IC groups (3.6 × 10. 3. vs 7.0 × 10. 4. ; p = 0.022; 3.6 × 10. 3. vs 1.0 × 10. 5. ; p = 0.007, respectively) at POD 21. There was a significant 1.6-log. 10. (98%) reduction in mean implant CFUs in the VB group compared with the IC group (1.3 × 10. 0. vs 4.7 × 10. 1. , respectively; p = 0.038). Combined soft-tissue and
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
Post-discharge surveillance of surgical site infection is necessary if accurate rates of infection following surgery are to be available. We undertook a prospective study of 376 knee and hip replacements in 366 patients in order to estimate the rate of orthopaedic surgical site infection in the community. The inpatient infection was 3.1% and the post-discharge infection rate was 2.1%. We concluded that the use of telephone interviews of patients to identify the group at highest risk of having a surgical site infection (those who think they have an infection) with rapid follow-up by a professional trained to diagnose infection according to agreed criteria is an effective method of identifying infection after discharge from hospital.
We examined the rates of infection and colonisation by methicillin-resistant In 2004, we screened 1795 of 1796 elective admissions and MRSA was found in 23 (1.3%). We also screened 1122 of 1447 trauma admissions and 43 (3.8%) were carrying MRSA. All ten ward transfers were screened and four (40%) were carriers (all p <
0.001). The incidence of MRSA in trauma patients increased by 2.6% per week of inpatient stay (r = 0.97, p <
0.001). MRSA developed in 2.9% of trauma and 0.2% of elective patients during that admission (p <
0.001). The implementation of the MRSA policy reduced the incidence of MRSA infection by 56% in trauma patients (1.57% in 2003 (17 of 1084) to 0.69% in 2004 (10 of 1447), p = 0.035). Infection with MRSA in elective patients was reduced by 70% (0.56% in 2003 (7 of 1257) to 0.17% in 2004 (3 of 1806), p = 0.06). The cost of preventing one MRSA infection was £3200. Although colonisation by MRSA did not affect the mortality rate, infection by MRSA more than doubled it. Patients with proximal fractures of the femur infected with MRSA remained in hospital for 50 extra days, had 19 more days of vancomycin treatment and 26 more days of vacuum-assisted closure therapy than the matched controls. These additional costs equated to £13 972 per patient. From this experience we have been able to describe the epidemiology of MRSA, assess the impact of infection-control measures on MRSA infection rates and determine the morbidity, mortality and economic cost of MRSA carriage on trauma and elective orthopaedic wards.
We have prospectively studied the outcome of infections associated with implants which were retained and treated using a standardised antimicrobial protocol. Over a period of four years, we studied 24 consecutive patients who had symptoms of infection for less than one year, a stable implant, no sinus tract and a known pathogen which was susceptible to recommended antimicrobial agents. The infections involved hip prostheses (14), knee prostheses (5), an internal fixation device (4), and an ankle prosthesis (1). Twenty patients had a successful outcome at a median follow-up of 3.7 years (1.8 to 4.7); four had failure of the implant after a median follow-up of 1.2 years (0.3 to 2.5). The probability of survival without failure of treatment was 96% at one year (95% confidence interval (CI) 88 to 100), 92% at two years (95% CI 80 to 100) and 86% at three years (95% CI 72 to 100). Patients with a short-term infection but with a stable implant, no sinus tract and a known pathogen may be successfully treated by retention of the implant and the use of a standardised regimen of antimicrobial treatment.