Infection of human cartilage with
We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.
We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged <
65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders. Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.