Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 971 - 976
1 Jul 2007
Kampa RJ Prasthofer A Lawrence-Watt DJ Pattison RM

In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two.

Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 131 - 137
1 Jan 2009
Boraiah S Dyke JP Hettrich C Parker RJ Miller A Helfet D Lorich D

In spite of extensive accounts describing the blood supply to the femoral head, the prediction of avascular necrosis is elusive. Current opinion emphasises the contributions of the superior retinacular artery but may not explain the clinical outcome in many situations, including intramedullary nailing of the femur and resurfacing of the hip. We considered that significant additional contribution to the vascularity of the femoral head may exist. A total of 14 fresh-frozen hips were dissected and the medial circumflex femoral artery was cannulated in the femoral triangle. On the test side, this vessel was ligated, with the femoral head receiving its blood supply from the inferior vincular artery alone. Gadolinium contrast-enhanced MRI was then performed simultaneously on both control and test specimens. Polyurethane was injected, and gross dissection of the specimens was performed to confirm the extraosseous anatomy and the injection of contrast. The inferior vincular artery was found in every specimen and had a significant contribution to the vascularity of the femoral head. The head was divided into four quadrants: medial (0), superior (1), lateral (2) and inferior (3). In our study specimens the inferior vincular artery contributed a mean of 56% (25% to 90%) of blood flow in quadrant 0, 34% (14% to 80%) of quadrant 1, 37% (18% to 48%) of quadrant 2 and 68% (20% to 98%) in quadrant 3. Extensive intra-osseous anastomoses existed between the superior retinacular arteries, the inferior vincular artery and the subfoveal plexus.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 254 - 257
1 Feb 2008
Nakajima T Ohtori S Inoue G Koshi T Yamamoto S Nakamura J Takahashi K Harada Y

Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry.

Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted.

The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones.

Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 676 - 682
1 May 2009
Østbyhaug PO Klaksvik J Romundstad P Aamodt A

Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems.

Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur.

The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.