Between October 2001 and September 2009 we lengthened 242 lower-limb segments in 180 patients using the Intramedullary Skeletal Kinetic Distractor (ISKD). Mechanical failure was defined either as breakage of the ISKD or failure of the internal mechanism to activate. Retrieved nails which failed mechanically were examined by the manufacturer for defects. In all, 15 ISKDs in 12 patients (13 limbs) failed mechanically representing an overall failure rate of 6.2%, with fracture of the device occurring in ten of the 15 failures. Two nails in one patient failed to lengthen and had to be replaced. The manufacturer detected an error in the assembly of the nail, which prompted a wide recall. One nail jammed after being forcefully inserted, and two nails failed to lengthen fully. Lengthening was achieved in all 12 patients, although three required a second operation to exchange a defective nail for a new, functioning device. The ISKD is a complex mechanical device which lengthens by the oscillation of two telescopic sections connected by a threaded rod. The junction between these sections is surrounded by a keyring collar. This keyring collar is the weakest part of the device.
Patients undergoing femoral lengthening by external fixation
tolerate treatment less well when compared to tibial lengthening.
Lengthening of the femur with an intramedullary device may have
advantages. We reviewed all cases of simple femoral lengthening performed
at our unit from 2009 to 2014. Cases of nonunions, concurrent deformities,
congenital limb deficiencies and lengthening with an unstable hip
were excluded, leaving 33 cases (in 22 patients; 11 patients had
bilateral procedures) for review. Healing index, implant tolerance
and complications were compared.Aims
Patients and Methods
Internal lengthening devices in the femur lengthen
along the anatomical axis, potentially creating lateral shift of
the mechanical axis. We aimed to determine whether femoral lengthening
along the anatomical axis has an inadvertent effect on lower limb
alignment. Isolated femoral lengthening using the Intramedullary
Skeletal Kinetic Distractor was performed in 27 femora in 24 patients
(mean age 32 years (16 to 57)). Patients who underwent simultaneous realignment
procedures or concurrent tibial lengthening, or who developed mal-
or nonunion, were excluded. Pre-operative and six-month post-operative
radiographs were used to measure lower limb alignment. The mean lengthening
achieved was 4.4 cm (1.5 to 8.0). In 26 of 27 limbs, the mechanical
axis shifted laterally by a mean of 1.0 mm/cm of lengthening (0
to 3.5). In one femur that was initially in varus, a 3 mm medial
shift occurred during a lengthening of 2.2 cm. In a normally aligned limb, intramedullary lengthening along
the anatomical axis of the femur results in a lateral shift of the
mechanical axis by approximately 1 mm for each 1 cm of lengthening.
We report the results of intramedullary leg lengthening conducted between 2002 and 2009 using the Intramedullary Skeletal Kinetic Distractor in 69 unilateral lengthenings involving 58 femora and 11 tibiae. We identified difficulties that occurred during the treatment and assessed whether they were specifically due to the implant or independent of it. Paley’s classification for evaluating problems, obstacles and complications with external fixators was adopted, and implant-specific difficulties were continuously noted. There were seven failures requiring premature removal of the device, in four due to nail breakage and three for other reasons, and five unsuccessful outcomes after completion of the lengthening. In all, 116 difficulties were noted in 45 patients, with only 24 having problem-free courses. In addition to the difficulties arising from the use of external fixators, there were almost the same number again of implant-specific difficulties. Nevertheless, successful femoral lengthening was achieved in 52 of the 58 patients (90%). However, successful tibial lengthening was only achieved in five of 11 patients (45%).