Advertisement for orthosearch.org.uk
Results 1 - 20 of 520
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 557 - 564
1 Apr 2009
Rumian AP Draper ERC Wallace AL Goodship AE

An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 888 - 893
1 Sep 1998
Overgaard L Danielsen N Bjursten LM

Little is known about the tissue reactions to various implant materials which coincide with an inflammatory reaction. We used the avridine arthritis rat model to evaluate the tissue response in the synovial, interstitial and subcutaneous tissues after implant insertion.

Quantitative immunohistochemistry showed that normal joint synovial tissue is dominated by ED2-positive resident macrophages. Polyethylene implants induced a much stronger foreign-body reaction than titanium implants, as measured by the number of interfacial ED1-positive macrophages. The tissue response to titanium and polyethylene was also vastly different in arthritic synovial tissue compared with control tissue.

It is likely that these biomaterials interact differently with inflammatory cells or intermediary compounds. It may be that arthritic synovial tissue produces reactive oxygen intermediates (free radicals) with which titanium has a unique anti-inflammatory interaction in vitro.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears. Cite this article: Bone Joint J 2024;106-B(9):978–985


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 857 - 863
1 Aug 2023
Morgan C Li L Kasetti PR Varma R Liddle AD

Aims. As an increasing number of female surgeons are choosing orthopaedics, it is important to recognize the impact of pregnancy within this cohort. The aim of this review was to examine common themes and data surrounding pregnancy, parenthood, and fertility within orthopaedics. Methods. A systematic review was conducted by searching Medline, Emcare, Embase, PsycINFO, OrthoSearch, and the Cochrane Library in November 2022. The Preferred Reporting Items for Systematic Reviews and Meta Analysis were adhered to. Original research papers that focused on pregnancy and/or parenthood within orthopaedic surgery were included for review. Results. Of 1,205 papers, 19 met the inclusion criteria. Our results found that orthopaedic surgeons have higher reported rates of obstetric complications, congenital abnormalities, and infertility compared to the general population. They were noted to have children at a later age and voluntarily delayed childbearing. Negative perceptions of pregnancy from fellow trainees and programme directors were identified. Conclusion. Female orthopaedic surgeons have high rates of obstetric complications and infertility. Negative perceptions surrounding pregnancy can lead to orthopaedic surgeons voluntarily delaying childbearing. There is a need for a pregnancy-positive culture shift combined with formalized guidelines and female mentorship to create a more supportive environment for pregnancy within orthopaedic surgery. Cite this article: Bone Joint J 2023;105-B(8):857–863


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 751 - 758
1 Jul 2024
Yaxier N Zhang Y Song J Ning B

Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results. We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion. We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular environment rather than directly informing adjustments of treatment. Cite this article: Bone Joint J 2024;106-B(7):751–758


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 688 - 695
1 Jul 2024
Farrow L Zhong M Anderson L

Aims. To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Methods. Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation. Results. For THA, there were 5,558 patient radiology reports included, of which 4,137 were used for model training and testing, and 1,421 for external validation. Following training, model performance demonstrated average (mean across three folds) accuracy, F1 score, and area under the receiver operating curve (AUROC) values of 0.850 (95% confidence interval (CI) 0.833 to 0.867), 0.813 (95% CI 0.785 to 0.841), and 0.847 (95% CI 0.822 to 0.872), respectively. For TKA, 7,457 patient radiology reports were included, with 3,478 used for model training and testing, and 3,152 for external validation. Performance metrics included accuracy, F1 score, and AUROC values of 0.757 (95% CI 0.702 to 0.811), 0.543 (95% CI 0.479 to 0.607), and 0.717 (95% CI 0.657 to 0.778) respectively. There was a notable deterioration in performance on external validation in both cohorts. Conclusion. The use of routinely available preoperative radiology reports provides promising potential to help screen suitable candidates for THA, but not for TKA. The external validation results demonstrate the importance of further model testing and training when confronted with new clinical cohorts. Cite this article: Bone Joint J 2024;106-B(7):688–695


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 884 - 891
1 Jul 2016
Elliott DS Newman KJH Forward DP Hahn DM Ollivere B Kojima K Handley R Rossiter ND Wixted JJ Smith RM Moran CG

This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This ‘bone-healing unit’ produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff’s law, Perren’s strain theory and Frost’s concept of the “mechanostat”. In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture – healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884–91


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III. Cite this article: Bone Joint J 2021;103-B(3):547–552


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 3 - 10
1 Jul 2020
Sosa BR Niu Y Turajane K Staats K Suhardi V Carli A Fischetti V Bostrom M Yang X

Aims. Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment. Methods. The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load. Results. PlySs2 treatment reduced 99% more CFUs and 75% more biofilm compared with vancomycin in vitro. A combination of PlySs2 and vancomycin in vivo reduced the number of CFUs on the surface of implants by 92% and in the periprosthetic tissue by 88%. Conclusion. PlySs2 lysin was able to reduce biofilm, target planktonic bacteria, and work synergistically with vancomycin in our in vitro models. A combination of PlySs2 and vancomycin also reduced bacterial load in periprosthetic tissue and on the surface of implants in a murine model of DAIR treatment for established PJI. Cite this article: Bone Joint J 2020;102-B(7 Supple B):3–10


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 148 - 154
1 Feb 2020
Murray IR Chahla J Frank RM Piuzzi NS Mandelbaum BR Dragoo JL

Cell therapies hold significant promise for the treatment of injured or diseased musculoskeletal tissues. However, despite advances in research, there is growing concern about the increasing number of clinical centres around the world that are making unwarranted claims or are performing risky biological procedures. Such providers have been known to recommend, prescribe, or deliver so called ‘stem cell’ preparations without sufficient data to support their true content and efficacy. In this annotation, we outline the current environment of stem cell-based treatments and the strategies of marketing directly to consumers. We also outline the difficulties in the regulation of these clinics and make recommendations for best practice and the identification and reporting of illegitimate providers. Cite this article: Bone Joint J 2020;102-B(2):148–154


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims. The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups. Methods. A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm. 3. cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate. Results. For MSSA and MRSA, no inhibitory effect was found in the control group, and antibiotic-loaded smooth titanium alloy beads showed a short inhibitory effect until day 2. For MSSA, both tantalum and 3D porous titanium beads showed significantly larger mean ZOIs than cement beads (all p < 0.01) each day until day 7 for tantalum and until day 3 for 3D porous titanium. After six days, antibiotic-loaded cement had significantly larger mean ZOIs than the 3D porous titanium (p = 0.027), but no significant difference was found with tantalum (p = 0.082). For MRSA, both tantalum and 3D porous titanium beads had significantly larger mean ZOIs than antibiotic-loaded cement each day until day 6 for tantalum (all p < 0.01) and until day 3 for 3D porous titanium (all p < 0.04). Antibiotic-loaded cement had significantly larger mean ZOIs than tantalum and 3D porous titanium from day 7 to 9 (all p < 0.042). Conclusion. These results show that porous metal implants can deliver local antibiotics over slightly varying time frames based on in vitro analysis. Cite this article: Bone Joint J 2020;102-B(6 Supple A):158–162


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 782 - 787
3 Apr 2021
Mahmood A Rashid F Limb R Cash T Nagy MT Zreik N Reddy G Jaly I As-Sultany M Chan YTC Wilson G Harrison WJ

Aims. Despite the COVID-19 pandemic, incidence of hip fracture has not changed. Evidence has shown increased mortality rates associated with COVID-19 infection. However, little is known about the outcomes of COVID-19 negative patients in a pandemic environment. In addition, the impact of vitamin D levels on mortality in COVID-19 hip fracture patients has yet to be determined. Methods. This multicentre observational study included 1,633 patients who sustained a hip fracture across nine hospital trusts in North West England. Data were collected for three months from March 2020 and for the same period in 2019. Patients were matched by Nottingham Hip Fracture Score (NHFS), hospital, and fracture type. We looked at the mortality outcomes of COVID-19 positive and COVID-19 negative patients sustaining a hip fracture. We also looked to see if vitamin D levels had an impact on mortality. Results. The demographics of the 2019 and 2020 groups were similar, with a slight increase in proportion of male patients in the 2020 group. The 30-day mortality was 35.6% in COVID-19 positive patients and 7.8% in the COVID-19 negative patients. There was a potential association of decreasing vitamin D levels and increasing mortality rates for COVID-19 positive patients although our findings did not reach statistical significance. Conclusion. In 2020 there was a significant increase in 30-day mortality rates of patients who were COVID-19 positive but not of patients who were COVID-19 negative. Low levels of vitamin D may be associated with high mortality rates in COVID-19 positive patients. Cite this article: Bone Joint J 2021;103-B(4):782–787


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1170 - 1175
1 Sep 2012
Palan J Roberts V Bloch B Kulkarni A Bhowal B Dias J

The use of journal clubs and, more recently, case-based discussions in order to stimulate debate among orthopaedic surgeons lies at the heart of orthopaedic training and education. A virtual learning environment can be used as a platform to host virtual journal clubs and case-based discussions. This has many advantages in the current climate of constrained time and diminishing trainee and consultant participation in such activities. The virtual environment model opens up participation and improves access to journal clubs and case-based discussions, provides reusable educational content, establishes an electronic record of participation for individuals, makes use of multimedia material (including clinical imaging and photographs) for discussion, and finally, allows participants to link case-based discussions with relevant papers in the journal club. The Leicester experience highlights the many advantages and some of the potential difficulties in setting up such a virtual system and provides useful guidance for those considering such a system in their own training programme. As a result of the virtual learning environment, trainee participation has increased and there is a trend for increased consultant input in the virtual journal club and case-based discussions. It is likely that the use of virtual environments will expand to encompass newer technological approaches to personal learning and professional development


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article: Bone Joint J 2020;102-B(3):276–279


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 3 - 9
1 Jan 2019
Alamanda VK Springer BD

Aims. Prosthetic joint infection (PJI) remains a serious complication that is associated with high morbidity and costs. The aim of this study was to prepare a systematic review to examine patient-related and perioperative risk factors that can be modified in an attempt to reduce the rate of PJI. Materials and Methods. A search of PubMed and MEDLINE was conducted for articles published between January 1990 and February 2018 with a combination of search terms to identify studies that dealt with modifiable risk factors for reducing the rate of PJI. An evidence-based review was performed on 12 specific risk factors: glycaemic control, obesity, malnutrition, smoking, vitamin D levels, preoperative Staphylococcus aureus screening, the management of anti-rheumatic medication, perioperative antibiotic prophylaxis, presurgical skin preparation, the operating room environment, irrigant options, and anticoagulation. Results. Poor glycaemic control, obesity, malnutrition, and smoking are all associated with increased rates of PJI. Vitamin D replacement has been shown in preliminary animal studies to decrease rates of PJI. Preoperative Staphylococcus aureus screening and appropriate treatment results in decreased rates of PJI. Perioperative variables, such as timely and appropriate dosage of prophylactic antibiotics, skin preparation with chlorohexidine-based solution, and irrigation with dilute betadine at the conclusion of the operation, have all been associated with reduced rates of PJI. Similarly, aggressive anticoagulation and increased operating room traffic should be avoided to help minimize risk of PJI. Conclusion. PJI remains a serious complication of arthroplasty. Surgeons should be vigilant of the modifiable risk factors that can be addressed in an attempt to reduce the risk of PJI


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 848 - 851
1 Jul 2019
Sautet P Parratte S Mékidèche T Abdel MP Flécher X Argenson J Ollivier M

Aims. The aims of this study were to compare the mean duration of antibiotic release and the mean zone of inhibition between vancomycin-loaded porous tantalum cylinders and antibiotic-loaded bone cement at intervals, and to evaluate potential intrinsic antimicrobial properties of tantalum in an in vitro medium environment against methicillin-sensitive Staphylococcus aureus (MSSA). Materials and Methods. Ten porous tantalum cylinders and ten cylinders of cement were used. The tantalum cylinders were impregnated with vancomycin, which was also added during preparation of the cylinders of cement. The cylinders were then placed on agar plates inoculated with MSSA. The diameter of the inhibition zone was measured each day, and the cylinders were transferred to a new inoculated plate. Inhibition zones were measured with a Vernier caliper and using an automated computed evaluation, and the intra- and interobserver reproducibility were measured. The mean inhibition zones between the two groups were compared with Wilcoxon’s test. Results. MSSA was inhibited for 12 days by the tantalum cylinders and for nine days by the cement cylinders. At day one, the mean zone of inhibition was 28.6 mm for the tantalum and 19.8 mm for the cement group (p < 0.001). At day ten, the mean zone of inhibition was 3.8 mm for the tantalum and 0 mm for the cement group (p < 0.001). The porous tantalum cylinders soaked only with phosphate buffered solution showed no zone of inhibition. Conclusion. Compared with cement, tantalum could release antibiotics for longer. Further studies should assess the advantages of using antibiotic-loaded porous tantalum implants at revision arthroplasty. Cite this article: Bone Joint J 2019;101-B:848–851


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1039 - 1043
1 Oct 2024
Luo TD Kayani B Magan A Haddad FS

The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise.

Cite this article: Bone Joint J 2024;106-B(10):1039–1043.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 590 - 592
1 Jun 2023
Manktelow ARJ Mitchell P Haddad FS

Cite this article: Bone Joint J 2023;105-B(6):590–592.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 48 - 54
1 Jan 2020
Gwilym S Sansom L Rombach I Dutton SJ Achten J Costa ML

Aims. Distal radial fractures are the most common fracture sustained by the adult population. Most can be treated using cast immobilization without the need for surgery. The aim of this study was to assess the feasibility of a definitive trial comparing the commonly used fibreglass cast immobilization with an alternative product called Woodcast. Woodcast is a biodegradable casting material with theoretical benefits in terms of patient comfort as well as benefits to the environment. Methods. This was a multicentre, two-arm, open-label, parallel-group randomized controlled feasibility trial. Patients with a fracture of the distal radius aged 16 years and over were recruited from four centres in the UK and randomized (1:1) to receive a Woodcast or fibreglass cast. Data were collected on participant recruitment and retention, clinical efficacy, safety, and patient acceptability. Results. Over an eight-month period, 883 patients were screened, 271 were found to be eligible, and 120 were randomized. Patient-reported outcome measures were available for 116 (97%) of participants at five weeks and 99 (83%) at three months. Clinical outcomes and patient acceptability were similar between the two interventions and no serious adverse events were reported in either intervention arm. Conclusion. Both interventions were deemed efficacious and safe in the cohort studied. This study showed that a definitive study comparing Woodcast and fibreglass was feasible in terms of patient recruitment and retention. Cite this article: Bone Joint J 2020;102-B(1):48–54