Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety.

Cite this article: Bone Joint J 2020;102-B(3):371–375.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1555 - 1561
1 Nov 2015
Kwan MK Chiu CK Lee CK Chan CYW

Percutaneous placement of pedicle screws is a well-established technique, however, no studies have compared percutaneous and open placement of screws in the thoracic spine. The aim of this cadaveric study was to compare the accuracy and safety of these techniques at the thoracic spinal level. A total of 288 screws were inserted in 16 (eight cadavers, 144 screws in percutaneous and eight cadavers, 144 screws in open). Pedicle perforations and fractures were documented subsequent to wide laminectomy followed by skeletalisation of the vertebrae. The perforations were classified as grade 0: no perforation, grade 1: < 2 mm perforation, grade 2: 2 mm to 4 mm perforation and grade 3: > 4 mm perforation. In the percutaneous group, the perforation rate was 11.1% with 15 (10.4%) grade 1 and one (0.7%) grade 2 perforations. In the open group, the perforation rate was 8.3% (12 screws) and all were grade 1. This difference was not significant (p = 0.45). There were 19 (13.2%) pedicle fractures in the percutaneous group and 21 (14.6%) in the open group (p = 0.73). In summary, the safety of percutaneous fluoroscopy-guided pedicle screw placement in the thoracic spine between T4 and T12 is similar to that of the conventional open technique.

Cite this article: Bone Joint J 2015;97-B:1555–61.


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 977 - 982
1 Jul 2013
Wu AM Tian NF Wu LJ He W Ni WF Wang XY Xu HZ Chi YL

The purpose of this study was to determine whether it would be feasible to use oblique lumbar interbody fixation for patients with degenerative lumbar disease who required a fusion but did not have a spondylolisthesis.

A series of CT digital images from 60 patients with abdominal disease were reconstructed in three dimensions (3D) using Mimics v10.01: a digital cylinder was superimposed on the reconstructed image to simulate the position of an interbody screw. The optimal entry point of the screw and measurements of its trajectory were recorded. Next, 26 cadaveric specimens were subjected to oblique lumbar interbody fixation on the basis of the measurements derived from the imaging studies. These were then compared with measurements derived directly from the cadaveric vertebrae.

Our study suggested that it is easy to insert the screws for L1/2, L2/3 and L3/4 fixation: there was no significant difference in measurements between those of the 3-D digital images and the cadaveric specimens. For L4/5 fixation, part of L5 inferior articular process had to be removed to achieve the optimal trajectory of the screw. For L5/S1 fixation, the screw heads were blocked by iliac bone: consequently, the interior oblique angle of the cadaveric specimens was less than that seen in the 3D digital images.

We suggest that CT scans should be carried out pre-operatively if this procedure is to be adopted in clinical practice. This will assist in determining the feasibility of the procedure and will provide accurate information to assist introduction of the screws.

Cite this article: Bone Joint J 2013;95-B:977–82.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims

Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation.

Materials and Methods

A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 536 - 542
1 Apr 2013
Puchwein P Jester B Freytag B Tanzer K Maizen C Gumpert R Pichler W

Ventral screw osteosynthesis is a common surgical method for treating fractures of the odontoid peg, but there is still no consensus about the number and diameter of the screws to be used. The purpose of this study was to develop a more accurate measurement technique for the morphometry of the odontoid peg (dens axis) and to provide a recommendation for ventral screw osteosynthesis.

Images of the cervical spine of 44 Caucasian patients, taken with a 64-line CT scanner, were evaluated using the measuring software MIMICS. All measurements were performed by two independent observers. Intraclass correlation coefficients were used to measure inter-rater variability.

The mean length of the odontoid peg was 39.76 mm (sd 2.68). The mean screw entry angle α was 59.45° (sd 3.45). The mean angle between the screw and the ventral border of C2 was 13.18° (sd 2.70), the maximum possible mean converging angle of two screws was 20.35° (sd 3.24). The measurements were obtained at the level of 66% of the total odontoid peg length and showed mean values of 8.36 mm (sd 0.84) for the inner diameter in the sagittal plane and 7.35 mm (sd 0.97) in the coronal plane. The mean outer diameter of the odontoid peg was 12.88 mm (sd 0.91) in the sagittal plane and 11.77 mm (sd 1.09) in the coronal plane. The results measured at the level of 90% of the total odontoid peg length were a mean of 6.12 mm (sd 1.14) for the sagittal inner diameter and 5.50 mm (sd 1.05) for the coronal inner diameter. The mean outer diameter of the odontoid peg was 11.10 mm (sd 1.0) in the sagittal plane and 10.00 mm (sd 1.07) in the coronal plane. In order to calculate the necessary screw length using 3.5 mm cannulated screws, 1.5 mm should be added to the measured odontoid peg length when anatomical reduction seems possible.

The cross-section of the odontoid peg is not circular but slightly elliptical, with a 10% greater diameter in the sagittal plane. In the majority of cases (70.5%) the odontoid peg offers enough room for two 3.5 mm cannulated cortical screws.

Cite this article: Bone Joint J 2013;95-B:536–42.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1670 - 1677
1 Dec 2012
Tsirikos AI Subramanian AS

We reviewed 212 consecutive patients with adolescent idiopathic scoliosis who underwent posterior spinal arthrodesis using all pedicle screw instrumentation in terms of clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes. In Group 1 (51 patients), the correction was performed over two rods using bilateral segmental pedicle screws. In Group 2 (161 patients), the correction was performed over one rod using unilateral segmental pedicle screws with the second rod providing stability of the construct through two-level screw fixation at proximal and distal ends. The mean age at surgery was 14.8 years in both groups. Comparison between groups showed no significant differences with regard to age and Risser grade at surgery, pre- and post-operative scoliosis angle, coronal Cobb correction, length of hospital stay and SRS scores. Correction of upper thoracic curves was significantly better in Group 1 (p = 0.02). Increased surgical time and intra-operative blood loss was recorded in Group 1 (p < 0.001 and p = 0.04, respectively). The implant cost was reduced by mean 35% in Group 2 due to the lesser number of pedicle screws.

Unilateral and bilateral pedicle screw techniques have both achieved excellent deformity correction in adolescent patients with idiopathic scoliosis, which was maintained at two-year follow-up. This has been associated with high patient satisfaction and low complication rates.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 358 - 365
1 Mar 2015
Zhu L F. Zhang Yang D Chen A

The aim of this study was to evaluate the feasibility of using the intact S1 nerve root as a donor nerve to repair an avulsion of the contralateral lumbosacral plexus. Two cohorts of patients were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients with a unilateral fracture of the sacrum and sacral nerve injury were stimulated during surgery to establish the precise functional distribution of the S1 nerve root and its proportional contribution to individual muscles. In cohort 2, the contralateral uninjured S1 nerve root of six patients with a unilateral lumbosacral plexus avulsion was transected extradurally and used with a 25 cm segment of the common peroneal nerve from the injured leg to reconstruct the avulsed plexus.

The results from cohort 1 showed that the innervation of S1 in each muscle can be compensated for by L4, L5, S2 and S3. Numbness in the toes and a reduction in strength were found after surgery in cohort 2, but these symptoms gradually disappeared and strength recovered. The results of electrophysiological studies of the donor limb were generally normal.

Severing the S1 nerve root does not appear to damage the healthy limb as far as clinical assessment and electrophysiological testing can determine. Consequently, the S1 nerve can be considered to be a suitable donor nerve for reconstruction of an avulsed contralateral lumbosacral plexus.

Cite this article: Bone Joint J 2015; 97-B:358–65.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 955 - 960
1 Jul 2011
Tobler WD Ferrara LA

The presacral retroperitoneal approach for axial lumbar interbody fusion (presacral ALIF) is not widely reported, particularly with regard to the mid-term outcome. This prospective study describes the clinical outcomes, complications and rates of fusion at a follow-up of two years for 26 patients who underwent this minimally invasive technique along with further stabilisation using pedicle screws. The fusion was single-level at the L5-S1 spinal segment in 17 patients and two-level at L4–5 and L5-S1 in the other nine. The visual analogue scale for pain and Oswestry Disability Index scores were recorded pre-operatively and during the 24-month study period. The evaluation of fusion was by thin-cut CT scans at six and 12 months, and flexion-extension plain radiographs at six, 12 and 24 months. Significant reductions in pain and disability occurred as early as three weeks postoperatively and were maintained. Fusion was achieved in 22 of 24 patients (92%) at 12 months and in 23 patients (96%) at 24 months. One patient (4%) with a pseudarthrosis underwent successful revision by augmentation of the posterolateral fusion mass through a standard open midline approach.

There were no severe adverse events associated with presacral ALIF, which in this series demonstrated clinical outcomes and fusion rates comparable with those of reports of other methods of interbody fusion.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 545 - 549
1 Apr 2010
Li W Chi Y Xu H Wang X Lin Y Huang Q Mao F

We reviewed the outcome of a retrospective case series of eight patients with atlantoaxial instability who had been treated by percutaneous anterior transarticular screw fixation and grafting under image-intensifier guidance between December 2005 and June 2008.

The mean follow-up was 19 months (8 to 27). All eight patients had a solid C1–2 fusion. There were no breakages or displacement of screws. All the patients with pre-operative neck pain had immediate relief from their symptoms or considerable improvement. There were no major complications. Our preliminary clinical results suggest that percutaneous anterior transarticulation screw fixation is technically feasible, safe, useful and minimally invasive when using the appropriate instruments allied to intra-operative image intensification, and by selecting the correct puncture point, angle and depth of insertion.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1464 - 1468
1 Nov 2006
Anderson AJ Towns GM Chiverton N

Traumatic atlanto-occipital dislocation in adults is usually fatal and survival without neurological deficit is rare. The surgical management of those who do survive is difficult and controversial. Most authorities recommend posterior occipitoaxial fusion, but this compromises cervical rotation. We describe a case in which a patient with a traumatic atlanto-occipital disruption but no neurological deficit was treated by atlanto-occipital fusion using a new technique consisting of cancellous bone autografting supported by an occipital plate linked by rods to lateral mass screws in the atlas. The technique is described in detail. At one year the neck was stable, radiological fusion had been achieved, and atlantoaxial rotation preserved.

The rationale behind this approach is discussed and the relevant literature reviewed. We recommend the technique for injuries of this type.