Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1112 - 1116
1 Aug 2018
Sinha R Weigl D Mercado E Becker T Kedem P Bar-On E

Aims. Guided growth using eight-plates is commonly used for correction of angular limb deformities in growing children. The principle is of tethering at the physeal periphery while enabling growth in the rest of the physis. The method is also applied for epiphysiodesis to correct limb-length discrepancy (LLD). Concerns have been raised regarding the potential of this method to create an epiphyseal deformity. However, this has not been investigated. The purpose of this study was to detect and quantify the occurrence of deformities in the proximal tibial epiphysis following treatment with eight-plates. Patients and Methods. A retrospective study was performed including 42 children at a mean age of 10.8 years (3.7 to 15.7) undergoing eight-plate insertion in the proximal tibia for correction of coronal plane deformities or LLD between 2007 and 2015. A total of 64 plates were inserted; 48 plates (34 patients) were inserted to correct angular deformities and 16 plates (8 patients) for LLD. Medical records, Picture Archive and Communication System images, and conventional radiographs were reviewed. Measurements included interscrew angle, lateral and medial plateau slope angles measured between the plateau surface and the line between the ends of the physis, and tibial plateau roof angle defined as 180° minus the sum of both plateau angles. Measurements were compared between radiographs performed adjacent to surgery and those at latest follow-up, and between operated and non-operated plateaus. Statistical analysis was performed using BMDP Statistical Software. Results. Slope angle increased in 31 (49.2%) of operated epiphyses by a mean of 5° (1° to 23°) compared with 29 (31.9%) in non-operated epiphyses (p = 0.043). Roof angle decreased in 29 (46.0%) of operated tibias and in 25 (27.5%) of non-operated ones by a mean of 5° (1° to 18°) (p = 0.028). Slope angle change frequency was similar in patients with LLD, varus and valgus correction (p = 0.37) but roof angle changes were slightly more frequent in LLD (p = 0.059) and correlated with the change in inter screw angles (r = 0.74, p = 0.001). Conclusion. The use of eight-plates in the proximal tibia for deformity correction and limb-length equalization causes a change in the bony morphology of the tibial plateau in a significant number of patients and the effect is more pronounced in the correction of LLD. Cite this article: Bone Joint J 2018;100-B:1112–16


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1412 - 1418
3 Oct 2020
Ballhause TM Stiel N Breyer S Stücker R Spiro AS

Aims. Eight-plates are used to correct varus-valgus deformity (VVD) or limb-length discrepancy (LLD) in children and adolescents. It was reported that these implants might create a bony deformity within the knee joint by change of the roof angle (RA) after epiphysiodesis of the proximal tibia following a radiological assessment limited to anteroposterior (AP) radiographs. The aim of this study was to analyze the RA, complemented with lateral knee radiographs, with focus on the tibial slope (TS) and the degree of deformity correction. Methods. A retrospective, single-centre study was conducted. The treatment group (n = 64 knees in 44 patients) was subclassified according to the implant location in two groups: 1) medial hemiepiphysiodesis; and 2) lateral hemiepiphysiodesis. A third control group consisted of 25 untreated knees. The limb axes and RA were measured on long standing AP leg radiographs. Lateral radiographs of 40 knees were available for TS analysis. The mean age of the patients was 10.6 years (4 to 15) in the treatment group and 8.4 years (4 to 14) in the control group. Implants were removed after a mean 1.2 years (0.5 to 3). Results. No significant differences in RA (p = 0.174) and TS (p = 0.787) were observed. The limb axes were significantly corrected in patients with VVD (p < 0.001). The change in tibial slope (∆TS) did not correlate (r = -0.026; p = 0.885) to the plate’s position on the physis when assessed by lateral radiographs. Conclusion. We were not able to confirm the reported change in the bony morphology of the proximal tibia on AP radiographs in our patient population. In addition, no significant change in TS was detected on the lateral radiographs. A significant correction of the VVD in the lower limb axes was evident. Position of the implant did not correlate with TS change. Therefore, eight-plate epiphysiodesis is a safe and effective procedure for correcting VVD in children without disturbing the knee joint morphology. Cite this article: Bone Joint J 2020;102-B(10):1412–1418


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 331 - 340
1 Mar 2023
Vogt B Toporowski G Gosheger G Laufer A Frommer A Kleine-Koenig M Roedl R Antfang C

Aims

Temporary hemiepiphysiodesis (HED) is applied to children and adolescents to correct angular deformities (ADs) in long bones through guided growth. Traditional Blount staples or two-hole plates are mainly used for this indication. Despite precise surgical techniques and attentive postoperative follow-up, implant-associated complications are frequently described. To address these pitfalls, a flexible staple was developed to combine the advantages of the established implants. This study provides the first results of guided growth using the new implant and compares these with the established two-hole plates and Blount staples.

Methods

Between January 2013 and December 2016, 138 patients (22 children, 116 adolescents) with genu valgum or genu varum were treated with 285 flexible staples. The minimum follow-up was 24 months. These results were compared with 98 patients treated with 205 two-hole plates and 92 patients treated with 535 Blount staples. In long-standing anteroposterior radiographs, mechanical axis deviations (MADs) were measured before and during treatment to analyze treatment efficiency. The evaluation of the new flexible staple was performed according to the idea, development, evaluation, assessment, long-term (IDEAL) study framework (Stage 2a).


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 535 - 541
1 Apr 2018
Stevenson JD Doxey R Abudu A Parry M Evans S Peart F Jeys L

Aims

Preserving growth following limb-salvage surgery of the upper limb in children remains a challenge. Vascularized autografts may provide rapid biological incorporation with the potential for growth and longevity. In this study, we aimed to describe the outcomes following proximal humeral reconstruction with a vascularized fibular epiphyseal transfer in children with a primary sarcoma of bone. We also aimed to quantify the hypertrophy of the graft and the annual growth, and to determine the functional outcomes of the neoglenofibular joint.

Patients and Methods

We retrospectively analyzed 11 patients who underwent this procedure for a primary bone tumour of the proximal humerus between 2004 and 2015. Six had Ewing’s sarcoma and five had osteosarcoma. Their mean age at the time of surgery was five years (two to eight). The mean follow-up was 5.2 years (1 to 12.2).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 270 - 275
1 Feb 2012
Ilharreborde B Gaumetou E Souchet P Fitoussi F Presedo A Penneçot GF Mazda K

Percutaneous epiphysiodesis using transphyseal screws (PETS) has been developed for the treatment of lower limb discrepancies with the aim of replacing traditional open procedures. The goal of this study was to evaluate its efficacy and safety at skeletal maturity. A total of 45 consecutive patients with a mean skeletal age of 12.7 years (8.5 to 15) were included and followed until maturity. The mean efficacy of the femoral epiphysiodesis was 35% (14% to 87%) at six months and 66% (21% to 100%) at maturity. The mean efficacy of the tibial epiphysiodesis was 46% (18% to 73%) at six months and 66% (25% to 100%) at maturity. In both groups of patients the under-correction was significantly reduced between six months post-operatively and skeletal maturity. The overall rate of revision was 18% (eight patients), and seven of these revisions (87.5%) involved the tibia. This series showed that use of the PETS technique in the femur was safe, but that its use in the tibia was associated with a significant rate of complications, including a valgus deformity in nine patients (20%), leading us to abandon it in the tibia. The arrest of growth was delayed and the final loss of growth at maturity was only 66% of that predicted pre-operatively. This should be taken into account in the pre-operative planning.