Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 516 - 519
1 Apr 2008
Pichler W Tesch NP Schwantzer G Fronhöfer G Boldin C Hausleitner L Grechenig W

The purpose of this anatomical study was to explore the morphological variations of the semitendinosus and gracilis tendons in length and cross-section and the statistical relationship between length, cross-section, and body height.

We studied the legs of 93 humans in 136 cadavers. In 43 specimens (46.2%) it was possible to harvest the tendons from both legs.

We found considerable differences in the length and cross-section of the semitendinosus and the gracilis tendons with a significant correlation between the two. A correlation between the length of the femur, reflecting height, and the length of the tendons was only observed in specimens harvested from women. The reason for this gender difference was unclear. Additionally, there was a correlation between the cross-sectional area of the tendons and the length of the femur. Surgeons should be aware of the possibility of encountering insufficient length of tendon when undertaking reconstructive surgery as a result of anatomical variations between patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1660 - 1665
1 Dec 2007
Krause F Windolf M Schwieger K Weber M

A cavovarus foot deformity was simulated in cadaver specimens by inserting metallic wedges of 15° and 30° dorsally into the first tarsometatarsal joint. Sensors in the ankle joint recorded static tibiotalar pressure distribution at physiological load. The peak pressure increased significantly from neutral alignment to the 30° cavus deformity, and the centre of force migrated medially. The anterior migration of the centre of force was significant for both the 15° (repeated measures analysis of variance (ANOVA), p = 0.021) and the 30° (repeated measures ANOVA, p = 0.007) cavus deformity. Differences in ligament laxity did not influence the peak pressure. These findings support the hypothesis that the cavovarus foot deformity causes an increase in anteromedial ankle joint pressure leading to anteromedial arthrosis in the long term, even in the absence of lateral hindfoot instability


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 580 - 585
1 Apr 2010
Shido Y Nishida Y Suzuki Y Kobayashi T Ishiguro N

We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia.

The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1517 - 1521
1 Nov 2008
Liu DD Hsieh N Chen HI

Several experimental models have been used to produce intravascular fat embolism. We have developed a simple technique to induce fat embolism using corn oil emulsified with distilled water to form fatty micelles. Fat embolism was produced by intravenous administration of these fatty micelles in anaesthetised rats, causing alveolar oedema, haemorrhage and increased lung weight.

Histopathological examination revealed fatty droplets and fibrin thrombi in the lung, kidney and brain. The arteriolar lumen was filled with fatty deposits. Following fat embolism, hypoxia and hypercapnia occurred. The plasma phospholipase A2, nitrate/nitrite, methylguidanidine and proinflammatory cytokines were significantly increased. Mass spectrometry showed that the main ingredient of corn oil was oleic acid.

This simple technique may be applied as a new animal model for the investigation of the mechanisms involved in the fat embolism syndrome.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 124 - 130
1 Jan 2009
Deuel CR Jamali AA Stover SM Hazelwood SJ

Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur.

These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 254 - 257
1 Feb 2008
Nakajima T Ohtori S Inoue G Koshi T Yamamoto S Nakamura J Takahashi K Harada Y

Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry.

Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted.

The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones.

Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 400 - 404
1 Mar 2008
Johansson HR Skripitz R Aspenberg P

We have examined the deterioration of implant fixation after withdrawal of parathyroid hormone (PTH) in rats. First, the pull-out force for stainless-steel screws in the proximal tibia was measured at different times after withdrawal. The stimulatory effect of PTH on fixation was lost after 16 days. We then studied whether bisphosphonates could block this withdrawal effect. Mechanical and histomorphometric measurements were conducted for five weeks after implantation. Subcutaneous injections were given daily. Specimens treated with either PTH or saline during the first two weeks showed no difference in the mechanical or histological results (pull-out force 76 N vs 81 N; bone volume density 19% vs 20%). Treatment with PTH for two weeks followed by pamidronate almost doubled the pull-out force (152 N; p < 0.001) and the bone volume density (37%; ANOVA, p < 0.001). Pamidronate alone did not have this effect (89 N and 25%, respectively). Thus, the deterioration can be blocked by bisphosphonates. The clinical implications are discussed.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1115 - 1121
1 Aug 2007
Messick KJ Miller MA Damron LA Race A Clarke MT Mann KA

The role of vacuum mixing on the reduction of porosity and on the clinical performance of cemented total hip replacements remains uncertain. We have used paired femoral constructs prepared with either hand-mixed or vacuum-mixed cement in a cadaver model which simulated intra-operative conditions during cementing of the femoral component. After the cement had cured, the distribution of its porosity was determined, as was the strength of the cement-stem and cement-bone interfaces.

The overall fraction of the pore area was similar for both hand-mixed and vacuum-mixed cement (hand 6%; vacuum 5.7%; paired t-test, p = 0.187). The linear pore fractions at the interfaces were also similar for the two techniques. The pore number-density was much higher for the hand-mixed cement (paired t-test, p = 0.0013). The strength of the cement-stem interface was greater with the hand-mixed cement (paired t-test, p = 0.0005), while the strength of the cement-bone interface was not affected by the conditions of mixing (paired t-test, p = 0.275). The reduction in porosity with vacuum mixing did not affect the porosity of the mantle, but the distribution of the porosity can be affected by the technique of mixing used.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 117 - 119
1 Jan 2005
Chin T Sawamura S Shiba R Oyabu H Nagakura Y Nakagawa A

We have compared the energy expenditure during walking in three patients, aged between 51 and 55 years, with unilateral disarticulation of the hip when using the mechanical-controlled stance-phase control knee (Otto Bock 3R15) and the microprocessor-controlled pneumatic swing-phase control knee (Intelligent Prosthesis, IP). All had an endoskeletal hip disarticulation prosthesis with an Otto Bock 7E7 hip and a single-axis foot. The energy expenditure was measured when walking at speeds of 30, 50, and 70 m/min.

Two patients showed a decreased uptake of oxygen (energy expenditure per unit time, ml/kg/min) of between 10.3% and 39.6% when using the IP compared with the Otto Bock 3R15 at the same speeds. One did not show any significant difference in the uptake of oxygen at 30 m/min, but at 50 and 70 m/min, a decrease in uptake of between 10.5% and 11.6% was found when using the IP. The use of the IP decreased the energy expenditure of walking in these patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 960 - 966
1 Jul 2006
Pluhar GE Turner AS Pierce AR Toth CA Wheeler DL

Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p > 0.05), yet material properties were inferior (p < 0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 128 - 134
1 Jan 2005
Goldberg AJ Lee DA Bader DL Bentley G

An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous extracellular matrix by human chondrocytes used in ACI. Chondrocytes surplus to clinical requirements for ACI from 24 patients were pelleted and cultured in either DMEM (Dulbecco’s modified eagles medium)/ITS+Premix/TGF-β1 or DMEM/10%FCS (fetal calf serum) and were subsequently analysed biochemically and morphologically.

Pellets cultured in DMEM/ITS+/TGF-β1 stained positively for type-II collagen, while those maintained in DMEM/10%FCS expressed type-I collagen. The pellets cultured in DMEM/ITS+/TGF-β1 were larger and contained significantly greater amounts of DNA and glycosaminoglycans. This study suggests that the use of a defined medium containing TGF-β is necessary to induce the re-expression of a differentiated chondrocytic phenotype and the subsequent stimulation of glycosaminoglycan and type-II collagen production by human monolayer expanded chondrocytes.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 571 - 576
1 Apr 2005
Savarino L Granchi D Cenni E Baldini N Greco M Giunti A

There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III). Internal normal reference ranges were obtained from 30 healthy subjects (group IV).

The serum PICP level was found to be significantly lower in patients with OA and those with loosening, when compared with those with stable implants, while the NTx level was significantly increased only in the group with loosening, suggesting that collagen degradation depended on the altered bone turnover induced by the implant. This hypothesis was reinforced by the finding that the values in the pre-surgery patients and stable subjects were comparable with the reference range of younger healthy subjects.

A high specificity and positive predictive value for NTx provided good diagnostic evidence of agreement between the test and the clinical and radiological evaluations. The NTx level could be used to indicate stability of the implant. However, further prospective, larger studies are necessary.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1292 - 1297
1 Sep 2005
Lietman SA Inoue N Rafiee B Deitz LW Chao EYS

We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone.

Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group.

These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 261 - 266
1 Feb 2005
Földhazy Z Arndt A Milgrom C Finestone A Ekenman I

Strains applied to bone can stimulate its development and adaptation. High strains and rates of strain are thought to be osteogenic, but the specific dose response relationship is not known. In vivo human strain measurements have been performed in the tibia to try to identify optimal bone strengthening exercises for this bone, but no measurements have been performed in the distal radial metaphysis, the most frequent site of osteoporotic fractures. Using a strain gauged bone staple, in vivo dorsal metaphyseal radial strains and rates of strain were measured in ten female patients during activities of daily living, standard exercises and falls on extended hands. Push-ups and falling resulted in the largest compression strains (median 1345 to 3146 με, equivalent to a 0.1345% to 0.3146% length change) and falling exercises in the largest strain rates (18 582 to 45 954 με/s). On the basis of their high strain and/or strain rates these or variations of these exercises may be appropriate for distal radial metaphyseal bone strengthening.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model.

A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated.

Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months.

Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model.

The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.