Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI. Cite this article:
The wrist is a complex joint involving many small bones and complicated kinematics. It has, therefore, been traditionally difficult to image and ascertain information about kinematics when making a diagnosis. Although MRI and fluoroscopy have been used, they both have limitations. Recently, there has been interest in the use of 4D-CT in imaging the wrist. This review examines the literature regarding the use of 4D-CT in imaging the wrist to assess kinematics and its ability to diagnose pathology. Some questions remain about the description of normal ranges, the most appropriate method of measuring intercarpal stability, the accuracy compared with established standards, and the place of 4D-CT in postoperative assessment. Cite this article: