Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1503 - 1509
1 Nov 2014
Ritter MA Davis KE Small SR Merchun JG Farris A

The relationship between post-operative bone density and subsequent failure of total knee replacement (TKR) is not known. This retrospective study aimed to determine the relationship between bone density and failure, both overall and according to failure mechanism. All 54 aseptic failures occurring in 50 patients from 7760 consecutive primary cemented TKRs between 1983 and 2004 were matched with non-failing TKRs, and 47 failures in 44 patients involved tibial failures with the matching characteristics of age (65.1 for failed and 69.8 for non-failed), gender (70.2% female), diagnosis (93.6% OA), date of operation, bilaterality, pre-operative alignment (0.4 and 0.3 respectively), and body mass index (30.2 and 30.0 respectively). In each case, the density of bone beneath the tibial component was assessed at each follow-up interval using standardised, calibrated radiographs. Failing knees were compared with controls both overall and, as a subgroup analysis, by failure mechanism. Knees were compared with controls using univariable linear regression.

Significant and continuous elevation in tibial density was found in knees that eventually failed by medial collapse (p < 0.001) and progressive radiolucency (p < 0.001) compared with controls, particularly in the medial region of the tibia. Knees failing due to ligamentous instability demonstrated an initial decline in density (p = 0.0152) followed by a non-decreasing density over time (p = 0.034 for equivalence). Non-failing knees reported a decline in density similar to that reported previously using dual-energy x-ray absorptiometry (DEXA). Differences between failing and non-failing knees were observable as early as two months following surgery. This tool may be used to identify patients at risk of failure following TKR, but more validation work is needed.

Cite this article: Bone Joint J 2014;96-B:1503–9.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1339 - 1347
1 Oct 2013
Scott CEH Eaton MJ Nutton RW Wade FA Pankaj P Evans SL

As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves (‘hits’) produced when damage occurs in material.

Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.

Cite this article: Bone Joint J 2013;95-B:1339–47.