Malpositioning of the trochanteric entry point
during the introduction of an intramedullary nail may cause iatrogenic
fracture or malreduction. Although the optimal point of insertion
in the coronal plane has been well described, positioning in the
sagittal plane is poorly defined. The paired femora from 374 cadavers were placed both in the anatomical
position and in internal rotation to neutralise femoral anteversion.
A marker was placed at the apparent apex of the greater trochanter,
and the lateral and anterior offsets from the axis of the femoral
shaft were measured on anteroposterior and lateral photographs. Greater
trochanteric morphology and trochanteric overhang were graded. The mean anterior offset of the apex of the trochanter relative
to the axis of the femoral shaft was 5.1 mm ( Placement of the entry position at the apex of the greater trochanter
in the anteroposterior view does not reliably centre an intramedullary
nail in the sagittal plane. Based on our findings, the site of insertion
should be about 5 mm posterior to the apex of the trochanter to
allow for its anterior offset. Cite this article:
Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.
Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated. The most appropriate carriers were selected by The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation. Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.