Osteoid osteoma is treated primarily by radiofrequency
(RF) ablation. However, there is little information about the distribution
of heat in bone during the procedure and its safety. We constructed
a model of osteoid osteoma to assess the distribution of heat in
bone and to define the margins of safety for ablation. Cavities
were drilled in cadaver
Extracorporeal irradiation of an excised tumour-bearing
segment of bone followed by its re-implantation is a technique used
in bone sarcoma surgery for limb salvage when the bone is of reasonable
quality. There is no agreement among previous studies about the
dose of irradiation to be given: up to 300 Gy have been used. We investigated the influence of extracorporeal irradiation on
the elastic and viscoelastic properties of bone. Bone was harvested
from mature cattle and subdivided into 13 groups: 12 were exposed
to increasing levels of irradiation: one was not and was used as
a control. The specimens, once irradiated, underwent mechanical
testing in saline at 37°C. The mechanical properties of each group, including Young’s modulus,
storage modulus and loss modulus, were determined experimentally
and compared with the control group. There were insignificant changes in all of these mechanical properties
with an increasing level of irradiation. We conclude that the overall mechanical effect of high levels
of extracorporeal irradiation (300 Gy) on bone is negligible. Consequently
the dose can be maximised to reduce the risk of local tumour recurrence. Cite this article: