Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims

The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment.

Methods

Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1703 - 1708
1 Dec 2020
Miyanji F Pawelek J Nasto LA Simmonds A Parent S

Aims

Spinal fusion remains the gold standard in the treatment of idiopathic scoliosis. However, anterior vertebral body tethering (AVBT) is gaining widespread interest, despite the limited data on its efficacy. The aim of our study was to determine the clinical efficacy of AVBT in skeletally immature patients with idiopathic scoliosis.

Methods

All consecutive skeletally immature patients with idiopathic scoliosis treated with AVBT enrolled in a longitudinal, multicentre, prospective database between 2013 and 2016 were analyzed. All patients were treated by one of two surgeons working at two independent centres. Data were collected prospectively in a multicentre database and supplemented retrospectively where necessary. Patients with a minimum follow-up of two years were included in the analysis. Clinical success was set a priori as a major coronal Cobb angle of < 35° at the most recent follow-up.


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 666 - 671
1 May 2016
Makino T Kaito T Sakai Y Kashii M Yoshikawa H

Aims

To clarify the asymmetrical ossification of the epiphyseal ring between the convex and concave sides in patients with adolescent idiopathic scoliosis (AIS).

Patients and Methods

A total of 29 female patients (mean age, 14.4 years; 11 to 18) who underwent corrective surgery for AIS (Lenke type 1 or 2) were included in our study. In all, 349 vertebrae including 68 apical vertebrae and 87 end vertebrae in the main thoracic (MT) curve and thoracolumbar/lumbar (TL/L) curve were analysed. Coronal sections (anterior, middle and posterior) of the vertebral bodies were reconstructed from pre-operative CT scans (320-row detector; slice thickness, 0.5 mm) and the appearances of the ossification centre in the epiphyseal ring at four corners were evaluated in three groups; all vertebrae excluding end vertebrae, apical vertebrae and end vertebrae. The appearance rates of the ossification centre at the concave and convex sides were calculated and compared.


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1372 - 1376
1 Oct 2018
Bao H Liu Z Bao M Zhu Z Yan P Liu S Feng Z Qian B Qiu Y

Aims

The aim of this study was to investigate the impact of maturity status at the time of surgery on final spinal height in patients with an adolescent idiopathic scoliosis (AIS) using the spine-pelvic index (SPI). The SPI is a self-control ratio that is independent of age and maturity status.

Patients and Methods

The study recruited 152 female patients with a Lenke 1 AIS. The additional inclusion criteria were a thoracic Cobb angle between 45° and 70°, Risser 0 to 1 or 3 to 4 at the time of surgery, and follow-up until 18 years of age or Risser stage 5. The patients were stratified into four groups: Risser 0 to 1 and selective fusion surgery (Group 1), Risser 0 to 1 and non-selective fusion (Group 2), Risser 3 to 4 and selective fusion surgery (Group 3), and Risser 3 to 4 and non-selective fusion (Group 4). The height of spine at follow-up (HOSf) and height of pelvis at follow-up (HOPf) were measured and the predicted HOS (pHOS) was calculated as 2.22 (SPI) × HOPf. One-way analysis of variance (ANOVA) was performed for statistical analysis.