We have studied the effects of bupivacaine on human and bovine
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism in vitro. The clinical benefits of intra-articular hyaluronic acid injections are thought to occur through improved joint lubrication. Recent findings have shown that exogenous hyaluronic acid is incorporated into articular cartilage where it may have a direct biological effect on chondrocytes through CD44 receptors. Bovine
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p <
0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis. We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human
Bovine and human
Ovine
Post-traumatic arthritis is a frequent consequence of articular fracture. The mechanisms leading to its development after such injuries have not been clearly delineated. A potential contributing factor is decreased viability of the
We have compared the concentrations of stromal-cell-derived factor-1 (SDF-1), matrix metalloproteinase-1 (MMP-1), MMP-9 and MMP-13 in serum before and after synovectomy or total knee replacement (TKR). We confirmed the presence of SDF-1 and its receptor CXCR4 in the synovium and articular cartilage by immunohistochemistry. We established chondrocytes by using mutant CXCR4 to block the release of MMPs. The level of SDF-1 was decreased 5.1- and 6.7-fold in the serum of patients with OA and RA respectively, after synovectomy compared with that before surgery. MMP-9 and MMP-13 were decreased in patients with OA and RA after synovectomy. We detected SDF-1 in the synovium and the bone marrow but not in cartilage. CXCR4 was detected in articular cartilage. SDF-1 increased the release of MMP-9 and MMP-13 from chondrocytes in a dose-dependent manner. The mutant CXCR4 blocked the release of MMP-9 and MMP-13 from chondrocytes by retrovirus vector. Synovectomy is effective in patients with OA or RA because SDF-1, which can regulate the release of MMP-9 and MMP-13 from
In an attempt to repair articular cartilage, allograft
We compared the changes in the ratio of type-I and type-II collagen in monolayer cultures of human
The intra-articular administration of tranexamic acid (TXA) has
been shown to be effective in reducing blood loss in unicompartmental
knee arthroplasty and anterior cruciate reconstruction. The effects
on human articular cartilage, however, remains unknown. Our aim,
in this study, was to investigate any detrimental effect of TXA
on chondrocytes, and to establish if there was a safe dose for its
use in clinical practice. The hypothesis was that TXA would cause
a dose-dependent damage to human articular cartilage. The cellular morphology, adhesion, metabolic activity, and viability
of human chondrocytes when increasing the concentration (0 mg/ml
to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were
analyzed in a 2D model. This was then repeated, excluding cellular
adhesion, in a 3D model and confirmed in viable samples of articular cartilage.Aims
Materials and Methods
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.
Hyaline articular cartilage has been known to
be a troublesome tissue to repair once damaged. Since the introduction
of autologous chondrocyte implantation (ACI) in 1994, a renewed
interest in the field of cartilage repair with new repair techniques
and the hope for products that are regenerative have blossomed.
This article reviews the basic science structure and function of
articular cartilage, and techniques that are presently available
to effect repair and their expected outcomes.
This Although many agents commonly injected into joints are chondrotoxic,
in this Cite this article:
The aim of this study was to assess the effect
of injecting genetically engineered chondrocytes expressing transforming
growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis.
We assessed the resultant function, pain and quality of life. A total of 54 patients (20 men, 34 women) who had a mean age
of 58 years (50 to 66) were blinded and randomised (1:1) to receive
a single injection of the active treatment or a placebo. We assessed
post-treatment function, pain severity, physical function, quality
of life and the incidence of treatment-associated adverse events. Patients
were followed at four, 12 and 24 weeks after injection. At final follow-up the treatment group had a significantly greater
improvement in the mean International Knee Documentation Committee
score than the placebo group (16 points; -18 to 49, This technique may result in improved clinical outcomes, with
the aim of slowing the degenerative process, leading to improvements
in pain and function. However, imaging and direct observational
studies are needed to verify cartilage regeneration. Nevertheless,
this study provided a sufficient basis to proceed to further clinical testing. Cite this article:
Ketamine has been used in combination with a
variety of other agents for intra-articular analgesia, with promising results.
However, although it has been shown to be toxic to various types
of cell, there is no available information on the effects of ketamine
on chondrocytes. We conducted a prospective randomised controlled study to evaluate
the effects of ketamine on cultured chondrocytes isolated from rat
articular cartilage. The cultured cells were treated with 0.125
mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for
6 h, 24 hours and 48 hours, and compared with controls. Changes of
apoptosis were evaluated using fluorescence microscopy with a 490
nm excitation wavelength. Apoptosis and eventual necrosis were seen
at each concentration. The percentage viability of the cells was
inversely proportional to both the duration and dose of treatment
(p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely
toxic. We concluded that in the absence of solid data to support the
efficacy of intra-articular ketamine for the control of pain, and
the toxic effects of ketamine on cultured chondrocytes shown by
this study, intra-articular ketamine, either alone or in combination
with other agents, should not be used to control pain. Cite this article:
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.
When transferring tissue regenerative strategies
involving skeletal stem cells to human application, consideration needs
to be given to factors that may affect the function of the cells
that are transferred. Local anaesthetics are frequently used during
surgical procedures, either administered directly into the operative
site or infiltrated subcutaneously around the wound. The aim of
this study was to investigate the effects of commonly used local anaesthetics
on the morphology, function and survival of human adult skeletal
stem cells. Cells from three patients who were undergoing elective hip replacement
were harvested and incubated for two hours with 1% lidocaine, 0.5%
levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability
was quantified using WST-1 and DNA assays. Viability and morphology
were further characterised using CellTracker Green/Ethidium Homodimer-1
immunocytochemistry and function was assessed by an alkaline phosphatase
assay. An additional group was cultured for a further seven days
to allow potential recovery of the cells after removal of the local
anaesthetic. A statistically significant and dose dependent reduction in cell
viability and number was observed in the cell cultures exposed to
all three local anaesthetics at concentrations of 25% and 50%, and
this was maintained even following culture for a further seven days. This study indicates that certain local anaesthetic agents in
widespread clinical use are deleterious to skeletal progenitor cells
when studied
The administration of intra-articular local anaesthetic is common following arthroscopy of the knee. However, recent evidence has suggested that bupivacaine may be harmful to articular cartilage. This study aimed to establish whether infiltration of bupivacaine around the portals is as effective as intra-articular injection. We randomised 137 patients to receive either 20 ml 0.5% bupivacaine introduced into the joint (group 1) or 20 ml 0.5% bupivacaine infiltrated only around the portals (group 2) following arthroscopy. A visual analogue scale was administered one hour post-operatively to assess pain relief. Both patients and observers were blinded to the treatment group. A power calculation was performed. The mean visual analogue score was 3.24 ( Infiltration of bupivacaine around the portals had an equivalent effect on pain scores at one hour, and we would therefore recommend this technique to avoid the possible chondrotoxic effect of intra-articular bupivacaine.
Desiccation of articular cartilage during surgery is often unavoidable and may result in the death of chondrocytes, with subsequent joint degeneration. This study was undertaken to determine the extent of chondrocyte death caused by exposure to air and to ascertain whether regular rewetting of cartilage could decrease cell death. Macroscopically normal human cartilage was exposed to air for 0, 30, 60 or 120 minutes. Selected samples were wetted in lactated Ringer’s solution for ten seconds every ten or 20 minutes. The viability of chondrocytes was measured after three days by Live/Dead staining. Chondrocyte death correlated with the length of exposure to air and the depth of the cartilage. Drying for 120 minutes caused extensive cell death mainly in the superficial 500 μm of cartilage. Rewetting every ten or 20 minutes significantly decreased cell death. The superficial zone is most susceptible to desiccation. Loss of superficial chondrocytes likely decreases the production of essential lubricating glycoproteins and contributes to subsequent degeneration. Frequent wetting of cartilage during arthrotomy is therefore essential.