The aim of this study was to describe the use of 3D-printed sacral endoprostheses to reconstruct the pelvic ring and re-establish spinopelvic stability after total We retrospectively reviewed 32 patients who underwent TES in our hospital between January 2015 and December 2017. We divided the patients into three groups on the basis of the method of reconstruction: an endoprosthesis group (n = 10); a combined reconstruction group (n = 14), who underwent non-endoprosthetic combined reconstruction, including anterior spinal column fixation; and a spinopelvic fixation (SPF) group (n = 8), who underwent only SPF. Spinopelvic stability, implant survival (IS), intraoperative haemorrhage rate, and perioperative complication rate in the endoprosthesis group were documented and compared with those of other two groups.Aims
Patients and Methods
The aims of this retrospective study were to report the feasibility
of using 3D-printing technology for patients with a pelvic tumour
who underwent reconstruction. A total of 35 patients underwent resection of a pelvic tumour
and reconstruction using 3D-printed endoprostheses between September
2013 and December 2015. According to Enneking’s classification of
bone defects, there were three Type I lesions, 12 Type II+III lesions,
five Type I+II lesions, two Type I+II+III lesions, ten type I+II+IV
lesions and three type I+II+III+IV lesions. A total of three patients
underwent reconstruction using an iliac prosthesis, 12 using a standard
hemipelvic prosthesis and 20 using a screw-rod connected hemipelvic
prosthesis.Aims
Patients and Methods