The aim of this study was to report the long-term prognosis of patients with multiple Langerhans cell histiocytosis (LCH) involving the spine, and to analyze the risk factors for progression-free survival (PFS). We included 28 patients with multiple LCH involving the spine treated between January 2009 and August 2021. Kaplan-Meier methods were applied to estimate overall survival (OS) and PFS. Univariate Cox regression analysis was used to identify variables associated with PFS.Aims
Methods
The aim of this study was to evaluate the feasibility
of using the intact S1 nerve root as a donor nerve to repair an avulsion
of the contralateral lumbosacral plexus. Two cohorts of patients
were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients
with a unilateral fracture of the sacrum and sacral nerve injury
were stimulated during surgery to establish the precise functional
distribution of the S1 nerve root and its proportional contribution
to individual muscles. In cohort 2, the contralateral uninjured
S1 nerve root of six patients with a unilateral lumbosacral plexus
avulsion was transected extradurally and used with a 25 cm segment
of the common peroneal nerve from the injured leg to reconstruct
the avulsed plexus. The results from cohort 1 showed that the innervation of S1 in
each muscle can be compensated for by L4, L5, S2 and S3. Numbness
in the toes and a reduction in strength were found after surgery
in cohort 2, but these symptoms gradually disappeared and strength
recovered. The results of electrophysiological studies of the donor
limb were generally normal. Severing the S1 nerve root does not appear to damage the healthy
limb as far as clinical assessment and electrophysiological testing
can determine. Consequently, the S1 nerve can be considered to be
a suitable donor nerve for reconstruction of an avulsed contralateral
lumbosacral plexus. Cite this article:
Few studies have examined the order in which
a spinal osteotomy and total hip replacement (THR) are to be performed
for patients with ankylosing spondylitis. We have retrospectively
reviewed 28 consecutive patients with ankylosing spondylitis who
underwent both a spinal osteotomy and a THR from September 2004
to November 2012. In the cohort 22 patients had a spinal osteotomy
before a THR (group 1), and six patients had a THR before a spinal
osteotomy (group 2). The mean duration of follow-up was 3.5 years
(2 to 9). The spinal sagittal Cobb angle of the vertebral osteotomy
segment was corrected from a pre-operative kyphosis angle of 32.4
(SD 15.5°) to a post-operative lordosis 29.6 (SD 11.2°) (p <
0.001). Significant improvements in pain, function and range of
movement were observed following THR. In group 2, two of six patients
had an early anterior dislocation. The spinal osteotomy was performed
two weeks after the THR. At follow-up, no hip has required revision
in either group. Although this non-comparative study only involved
a small number of patients, given our experience, we believe a spinal osteotomy
should be performed prior to a THR, unless the deformity is so severe
that the procedure cannot be performed. Cite this article:
This review of the literature presents the current understanding of Scheuermann’s kyphosis and investigates the controversies concerning conservative and surgical treatment. There is considerable debate regarding the pathogenesis, natural history and treatment of this condition. A benign prognosis with settling of symptoms and stabilisation of the deformity at skeletal maturity is expected in most patients. Observation and programmes of exercise are appropriate for mild, flexible, non-progressive deformities. Bracing is indicated for a moderate deformity which spans several levels and retains flexibility in motivated patients who have significant remaining spinal growth. The loss of some correction after the completion of bracing with recurrent anterior vertebral wedging has been reported in approximately one-third of patients. Surgical correction with instrumented spinal fusion is indicated for a severe kyphosis which carries a risk of progression beyond the end of growth causing cosmetic deformity, back pain and neurological complications. There is no consensus on the effectiveness of different techniques and types of instrumentation. Techniques include posterior-only and combined anteroposterior spinal fusion with or without posterior osteotomies across the apex of the deformity. Current instrumented techniques include hybrid and all-pedicle screw constructs.