Advertisement for orthosearch.org.uk
Results 1 - 20 of 98
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1545 - 1550
1 Nov 2007
Koslowsky TC Mader K Dargel J Koebke J Hellmich M Pennig D

We have evaluated four different fixation techniques for the reconstruction of a standard Mason type-III fracture of the radial head in a sawbone model. The outcome measurements were the quality of the reduction, and stability. A total of 96 fractures was created. Six surgeons were involved in the study and each reconstructed 16 fractures with 1.6 mm fine-threaded wires (Fragment Fixation System (FFS)), T-miniplates, 2 mm miniscrews and 2 mm Kirschner (K-) wires; four fractures being allocated to each method using a standard reconstruction procedure. The quality of the reduction was measured after definitive fixation. Biomechanical testing was performed using a transverse plane shear load in two directions to the implants (parallel and perpendicular) with respect to ultimate failure load and displacement at 50 N. A significantly better quality of reduction was achieved using the FFS wires (Tukey’s post hoc tests, p < 0.001) than with the other devices with a mean step in the articular surface and the radial neck of 1.04 mm (. sd. 0.96) for the FFS, 4.25 mm (. sd. 1.29) for the miniplates, 2.21 mm (. sd. 1.06) for the miniscrews and 2.54 mm (. sd. 0.98) for the K-wires. The quality of reduction was similar for K-wires and miniscrews, but poor for miniplates. The ultimate failure load was similar for the FFS wires (parallel, 196.8 N (. sd. 46.8), perpendicular, 212.5 N (. sd. 25.6)), miniscrews (parallel, 211.8 N (. sd. 47.9), perpendicular, 208.0 N (. sd. 65.9)) and K-wires (parallel, 200.4 N (. sd. 54.5), perpendicular, 165.2 N (. sd. 37.9)), but significantly worse (Tukey’s post hoc tests, p < 0.001) for the miniplates (parallel, 101.6 N (. sd. 43.1), perpendicular, 122.7 N (. sd. 40.7)). There was a significant difference in the displacement at 50 N for the miniplate (parallel, 4.8 mm (. sd. 2.8), perpendicular, 4.8 mm (. sd. 1.7)) vs FFS (parallel, 2.1 mm (. sd. 0.8), perpendicular, 1.9 mm (. sd. 0.7)), miniscrews (parallel, 1.8 mm (. sd. 0.5), perpendicular, 2.3 mm (. sd. 0.8)) and K-wires (parallel, 2.2 mm (. sd. 1.8), perpendicular, 2.4 mm (. sd. 0.7; Tukey’s post hoc tests, p < 0.001)). The fixation of a standard Mason type-III fracture in a sawbone model using the FFS system provides a better quality of reduction than that when using conventional techniques. There was a significantly better stability using FFS implants, miniscrews and K-wires than when using miniplates


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1528 - 1533
1 Nov 2007
Jeffcote B Nicholls R Schirm A Kuster MS

Achieving deep flexion after total knee replacement remains a challenge. In this study we compared the soft-tissue tension and tibiofemoral force in a mobile-bearing posterior cruciate ligament-sacrificing total knee replacement, using equal flexion and extension gaps, and with the gaps increased by 2 mm each. The tests were conducted during passive movement in five cadaver knees, and measurements of strain were made simultaneously in the collateral ligaments. The tibiofemoral force was measured using a customised mini-force plate in the tibial tray. Measurements of collateral ligament strain were not very sensitive to changes in the gap ratio, but tibiofemoral force measurements were. Tibiofemoral force was decreased by a mean of 40% (. sd. 10.7) after 90° of knee flexion when the flexion gap was increased by 2 mm. Increasing the extension gap by 2 mm affected the force only in full extension. Because increasing the range of flexion after total knee replacement beyond 110° is a widely-held goal, small increases in the flexion gap warrant further investigation


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 741 - 744
1 May 2005
Beaulé PE Krismer M Mayrhofer P Wanner S Le Duff M Mattesich M Stoeckl B Amstutz HC Biedermann R

Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers. The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 versus 32.2 months (p = 0.001) and 24.8 months (p = 0.012), respectively. EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 989 - 994
1 Jul 2014
Ozturk AM Ergun MA Demir T Gungor I Yilmaz A Kaya K

Ketamine has been used in combination with a variety of other agents for intra-articular analgesia, with promising results. However, although it has been shown to be toxic to various types of cell, there is no available information on the effects of ketamine on chondrocytes. We conducted a prospective randomised controlled study to evaluate the effects of ketamine on cultured chondrocytes isolated from rat articular cartilage. The cultured cells were treated with 0.125 mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for 6 h, 24 hours and 48 hours, and compared with controls. Changes of apoptosis were evaluated using fluorescence microscopy with a 490 nm excitation wavelength. Apoptosis and eventual necrosis were seen at each concentration. The percentage viability of the cells was inversely proportional to both the duration and dose of treatment (p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely toxic. We concluded that in the absence of solid data to support the efficacy of intra-articular ketamine for the control of pain, and the toxic effects of ketamine on cultured chondrocytes shown by this study, intra-articular ketamine, either alone or in combination with other agents, should not be used to control pain. Cite this article: Bone Joint J 2014; 96-B:989–94


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 327 - 330
1 Mar 1997
Poynton AR Javadpour SM Finegan PJ O’Brien M

The meniscofemoral ligaments (MFL) of the knee have both functional and clinical importance, but have been poorly described. We examined 42 human cadaver knees: there was at least one MFL in every joint and both ligaments were present in 27. The anterior MFL was present in the knees in all 18 males and in 17 of the 24 females. The posterior MFL was present in 16 males and 22 females. Measurement of the ligaments showed that they were of significant size. The mean midpoint width for the anterior MFL was 5.09 ± 1.41 mm in males and 2.99 ± 1.29 mm in females. The mean width of the posterior MFL was 5.48 ± 2.13 mm in males and 3.79 ± 2.56 mm in females. The average length of the anterior MFL was 27.09 ± 2.15 mm in males and 24.38 ± 3.39 mm in females, and the posterior MFL was 31.13 ± 2.54 mm and 27.59 ± 3.74 mm, respectively. There were anatomical variations in 16 (38%) knees (62.5% female, 37.5% male), more commonly in the posterior ligament. We conclude that the meniscofemoral ligaments are anatomically and probably functionally important structures in the human knee


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 315 - 319
1 Feb 2010
Lalliss SJ Branstetter JG

Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of > 2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of > 2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied. It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 748 - 752
1 Jul 2003
Nyffeler RW Anglin C Sheikh R Gerber C

Fixation of the glenoid component is critical to the outcome of total shoulder arthroplasty. In an in vitro study, we analysed the effect of surface design and thickness of the cement mantle on the pull-out strength of the polyethylene pegs which are considered essential for fixation of cemented glenoid components. The macrostructure and surface of the pegs and the thickness of the cement mantle were studied in human glenoid bone. The lowest pull-out forces, 20 ± 5 N, were for cylindrical pegs with a smooth surface fixed in the glenoid with a thin cement mantle. The highest values, 425 ± 7 N, were for threaded pegs fixed with a thicker cement mantle. Increasing the diameter of the hole into which the peg is inserted from 5.2 to 6.2 mm thereby increasing the thickness of the cement mantle, improved the mean pull-out force for the pegs tested


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 736 - 740
1 May 2005
Tochigi Y Rudert MJ Brown TD McIff TE Saltzman CL

When performing the Scandinavian Total Ankle Replacement (STAR), the positioning of the talar component and the selection of mobile-bearing thickness are critical. A biomechanical experiment was undertaken to establish the effects of these variables on the range of movement (ROM) of the ankle. Six cadaver ankles containing a specially-modified STAR prosthesis were subjected to ROM determination, under weight-bearing conditions, while monitoring the strain in the peri-ankle ligaments. Each specimen was tested with the talar component positions in neutral, as well as 3 and 6 mm of anterior and posterior displacement. The sequence was repeated with an anatomical bearing thickness, as well as at 2 mm reduced and increased thicknesses. The movement limits were defined as 10% strain in any ligament, bearing lift-off from the talar component or limitations of the hardware. Both anterior talar component displacement and bearing thickness reduction caused a decrease in plantar flexion, which was associated with bearing lift-off. With increased bearing thickness, posterior displacement of the talar component decreased plantar flexion, whereas anterior displacement decreased dorsiflexion


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 169 - 172
1 Jan 1998
Jorn LP Fridén T Ryd L Lindstrand A

We obtained simultaneous measurements of sagittal knee laxity in 12 consecutive patients after reconstruction of the anterior cruciate ligament (ACL), using the Stryker laxity tester and radiostereometric analysis (RSA). The mean anteroposterior (AP) displacement when a 90 N load was applied in both directions was 5.3 ± 2.7 mm with RSA and 9.8 ± 1.6 mm with the external device (p < 0.001). The corresponding measurements at a load of 180 N were 5.7 ± 2.4 mm and 13.8 ± 3.7 mm, respectively (p < 0.001). More than 50% of the sagittal knee movement, as measured by the external device at a load of 180 N, was not true femorotibial displacement of the joint but was due to soft-tissue deformation


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 2 | Pages 297 - 303
1 Mar 2000
Ramaniraka NA Rakotomanana LR Leyvraz P

After cemented total hip arthroplasty (THA) there may be failure at either the cement-stem or the cement-bone interface. This results from the occurrence of abnormally high shear and compressive stresses within the cement and excessive relative micromovement. We therefore evaluated micromovement and stress at the cement-bone and cement-stem interfaces for a titanium and a chromium-cobalt stem. The behaviour of both implants was similar and no substantial differences were found in the size and distribution of micromovement on either interface with respect to the stiffness of the stem. Micromovement was minimal with a cement mantle 3 to 4 mm thick but then increased with greater thickness of the cement. Abnormally high micromovement occurred when the cement was thinner than 2 mm and the stem was made of titanium. The relative decrease in surface roughness augmented slipping but decreased debonding at the cement-bone interface. Shear stress at this site did not vary significantly for the different coefficients of cement-bone friction while compressive and hoop stresses within the cement increased slightly


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 600 - 606
1 May 2002
Lietman SA Miyamoto S Brown PR Inoue N Reddi AH

Damage to articular cartilage is a common injury, for which there is no effective treatment. Our aims were to investigate the temporal sequence of the repair of articular cartilage and to define a critical-size defect. Full-thickness defects were made in adult male New Zealand white rabbits. The diameter (1 to 4 mm) of the defects was varied in order to determine the effect that the size and depth of the defect had on its healing. The defects were made in the femoral groove of the knee with one defect per knee and eight knees per group. The tissues were fixed in formalin at days 3, 7, 14, 21, 28, 42, 84 and 126 after operation and the sections stained with Toluidine Blue. These were then examined and evaluated for several parameters including the degree of metachromasia and the amount of subchondral bone which had reformed in the defect. The defects had a characteristic pattern of healing which differed at different days and for different sizes of defect. Specifically, the defects of 1 mm first peaked in terms of metachromasia at day 21, those of 2 mm at day 28, followed by defects of 3 mm and 4 mm. The healing of the subchondral bone was slowest in defects of 1 mm


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 270 - 275
1 Mar 1996
Hooten JP Engh CA Heekin RD Vinh TN

Two acetabula which contained large bone allografts introduced at revision arthroplasty were obtained at post-mortem. The allografts had been placed in superior defects to support cementless acetabular components, and both hips were functioning well at the time of death. Clinical radiographs demonstrated apparent healing of graft to host bone, no graft collapse and stability of the acetabular components. Microscopic examination of sections through these specimens showed that the bulk allografts were encapsulated in fibrous tissue. Vascularity was increased at the host-graft interface, but there was limited evidence of bone union between the graft and the host. In the few areas where union had occurred, revascularisation extended no more than 2 mm beyond the graft-host interface. Within the body of the graft, the acellular matrix of trabecular bone maintained structural integrity up to 48 months after surgery. In areas where the allograft was adjacent to an implant, there was fibrous tissue orientated parallel to the implant surface. The acetabulum which contained a porous-coated component showed evidence of bone growth into the porous surface where it was in contact with viable host bone. No ingrowth occurred in areas where the porous coating was in contact with the graft. Although the grafts were functioning well, allograft revascularisation and remodelling were minimal, and the radiological appearance of healing did not correlate with histological findings


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 280 - 285
1 Mar 1996
Wroblewski BM Siney PD Dowson D Collins SN

We report the findings from independent prospective clinical and laboratory-based joint-simulator studies of the performance of ceramic femoral heads of 22.225 mm diameter in cross-linked polyethylene (XLP) acetabular cups. We found remarkable qualitative and quantitative agreement between the clinical and simulator results for the wear characteristics with time, and confirmed that ceramic femoral heads penetrate the XLP cups at only about half the rate of otherwise comparable metal heads. In the clinical study, 19 hips in 17 patients were followed for an average of 77 months. In the hip-joint simulator a similar prosthesis was tested for 7.3 million cycles. Both clinical and simulator results showed relatively high rates of penetration over the first 18 months or 1.5 million cycles, followed by a very much lower wear thereafter. Once an initial bedding-in of 0.2 mm to 0.4 mm had taken place the subsequent rates of penetration were very small. The initial clinical wear during bedding-in averaged 0.29 mm/year; subsequent progression was an order of magnitude lower at about 0.022 mm/year, lower than the 0.07 mm/year in metal-to-UHMWP Charnley LFAs. Our results show the excellent tribological features of alumina-ceramic-to-XLP implants, and also confirm the value of well-designed joint simulators for the evaluation of total joint replacements


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 131 - 139
1 Jan 2011
Daugaard H Elmengaard B Andreassen TT Baas J Bechtold JE Soballe K

Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 973 - 976
1 Jul 2009
Kralinger F Unger S Wambacher M Smekal V Schmoelz W

The medial periosteal hinge plays a key role in fractures of the head of the humerus, offering mechanical support during and after reduction and maintaining perfusion of the head by the vessels in the posteromedial periosteum. We have investigated the biomechanical properties of the medial periosteum in fractures of the proximal humerus using a standard model in 20 fresh-frozen cadaver specimens comparable in age, gender and bone mineral density. After creating the fracture, we displaced the humeral head medial or lateral to the shaft with controlled force until complete disruption of the posteromedial periosteum was recorded. As the quality of periosteum might be affected by age and bone quality, the results were correlated with the age and the local bone mineral density of the specimens measured with quantitative CT. Periosteal rupture started at a mean displacement of 2.96 mm (. sd. 2.92) with a mean load of 100.9 N (. sd. 47.1). The mean maximum load of 111.4 N (. sd. 42.5) was reached at a mean displacement of 4.9 mm (. sd. 4.2). The periosteum was completely ruptured at a mean displacement of 34.4 mm (. sd. 11.1). There was no significant difference in the mean distance to complete rupture for medial (mean 35.8 mm (. sd. 13.8)) or lateral (mean 33.0 mm (. sd. 8.2)) displacement (p = 0.589). The mean bone mineral density was 0.111 g/cm. 3. (. sd. 0.035). A statistically significant but low correlation between bone mineral density and the maximum load uptake (r = 0.475, p = 0.034) was observed. This study showed that the posteromedial hinge is a mechanical structure capable of providing support for percutaneous reduction and stabilisation of a fracture by ligamentotaxis. Periosteal rupture started at a mean of about 3 mm and was completed by a mean displacement of just under 35 mm. The microvascular situation of the rupturing periosteum cannot be investigated with the current model


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 3 | Pages 357 - 362
1 May 1996
Natali C Ingle P Dowell J

We studied the various drill bits available for engineering purposes, and compared them with standard orthopaedic drill bits, using continuous temperature recording at 0.5 mm, 1.0 mm and 1.5 mm from the edge of a 2.5 mm hole as it was drilled in fresh cadaver human tibia. We found that some commercially available drill bits performed better than their orthopaedic equivalents, producing significantly less thermal injury to the surrounding bone and halving the force required for cortical penetration. Our work suggests that the optimal bit for orthopaedic purposes should have a split point and a quick helix. Theoretical knowledge of cutting technology predicts that the addition of a parabolic flute will further reduce thermal damage. Further work is being done on other drill sizes used in orthopaedic practice and on new custom-designed bits


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions.

A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed.

The mean angulation achieved at three weeks was 34.7° (standard deviation (sd) 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (sd 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established.

In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear.

Cite this article: Bone Joint J 2015;97-B:862–8.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 283 - 288
1 Feb 2015
Gupta S Maclean M Anderson JG MacGregor SJ Meek RMD Grant MH

High-intensity narrow-spectrum (HINS) light is a novel violet-blue light inactivation technology which kills bacteria through a photodynamic process, and has been shown to have bactericidal activity against a wide range of species. Specimens from patients with infected hip and knee arthroplasties were collected over a one-year period (1 May 2009 to 30 April 2010). A range of these microbial isolates were tested for sensitivity to HINS-light. During testing, suspensions of the pathogens were exposed to increasing doses of HINS-light (of 123mW/cm2 irradiance). Non-light exposed control samples were also used. The samples were then plated onto agar plates and incubated at 37°C for 24 hours before enumeration. Complete inactivation (greater than 4-log10 reduction) was achieved for all of the isolates. The typical inactivation curve showed a slow initial reaction followed by a rapid period of inactivation. The doses of HINS-light required ranged between 118 and 2214 J/cm2. Gram-positive bacteria were generally found to be more susceptible than Gram-negative.

As HINS-light uses visible wavelengths, it can be safely used in the presence of patients and staff. This unique feature could lead to its possible use in the prevention of infection during surgery and post-operative dressing changes.

Cite this article: Bone Joint J 2015;97-B:283–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.