Alumina–alumina bearings are among the most resistant
to wear in total hip replacement. Examination of their surfaces
is one way of comparing damage caused by wear of hip joints simulated We found that long-term alumina wear in association with a loose
acetabular component could be categorised into three groups. Of
20 specimens, four had ‘low wear’, eight ‘crescent wear’ and eight
‘severe wear’, which was characterised by a change in the physical
shape of the bearing and a loss of volume. This suggests that the
wear in alumina–alumina bearings in association with a loose acetabular
component may be variable in pattern, and may explain, in part,
why the wear of a ceramic head
1. Fifty tibial fractures treated by intramedullary nailing during seven years have been presented. There were twenty-eight closed and twenty-two open fractures. 2. The use of the method for treating open (compound) fractures is discussed. 3. The indications for intramedullary nailing are outlined.
The aim of this study was to reassess the rate of neurological, psoas-related, and abdominal complications associated with L4-L5 lateral lumbar interbody fusion (LLIF) undertaken using a standardized preoperative assessment and surgical technique. This was a multicentre retrospective study involving consecutively enrolled patients who underwent L4-L5 LLIF by seven surgeons at seven institutions in three countries over a five-year period. The demographic details of the patients and the details of the surgery, reoperations and complications, including femoral and non-femoral neuropraxia, thigh pain, weakness of hip flexion, and abdominal complications, were analyzed. Neurological and psoas-related complications attributed to LLIF or posterior instrumentation and persistent symptoms were recorded at one year postoperatively.Aims
Methods
The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.Aims
Methods
There are limited published data detailing the volumetric material loss from tapers of conventional metal-on-polyethylene (MoP) total hip arthroplasties (THAs). Our aim was to address this by comparing the taper wear rates measured in an explanted cohort of the widely used Exeter THA with those measured in a group of metal-on-metal (MoM) THAs. We examined an existing retrieval database to identify all Exeter V40 and Universal MoP THAs. Volumetric wear analysis of the taper surfaces was conducted using previously validated methodology. These values were compared with those obtained from a series of MoM THAs using non-parametric statistical methodology. A number of patient and device variables were accounted for using multiple regression modelling.Aims
Patients and Methods
We sought to determine whether cobalt-chromium alloy (CoCr) femoral
stem tapers (trunnions) wear more than titanium (Ti) alloy stem
tapers (trunnions) when used in a large diameter (LD) metal-on-metal
(MoM) hip arthroplasty system. We performed explant analysis using validated methodology to
determine the volumetric material loss at the taper surfaces of
explanted LD CoCr MoM hip arthroplasties used with either a Ti alloy
(n = 28) or CoCr femoral stem (n = 21). Only 12/14 taper constructs
with a rough male taper surface and a nominal included angle close
to 5.666° were included. Multiple regression modelling was undertaken
using taper angle, taper roughness, bearing diameter (horizontal
lever arm) as independent variables. Material loss was mapped using
a coordinate measuring machine, profilometry and scanning electron
microscopy.Aims
Patients and Methods
Restoration of leg length and offset is an important
goal in total hip replacement. This paper reports a calliper-based technique
to help achieve these goals by restoring the location of the centre
of the femoral head. This was validated first by using a co-ordinate
measuring machine to see how closely the calliper technique could
record and restore the centre of the femoral head when simulating
hip replacement on Sawbone femur, and secondly by using CT in patients
undergoing hip replacement. Results from the co-ordinate measuring machine showed that the
centre of the femoral head was predicted by the calliper to within
4.3 mm for offset (mean 1.6 (95% confidence interval (CI) 0.4 to
2.8)) and 2.4 mm for vertical height (mean -0.6 (95% CI -1.4 to
0.2)).
The CT scans showed that offset and vertical height were restored
to within 8 mm
(mean -1 (95% CI -2.1 to 0.6)) and -14 mm (mean 4 (95% CI 1.8 to
4.3)), respectively. Accurate assessment and restoration of the centre of the femoral
head is feasible with a calliper. It is quick, inexpensive, simple
to use and can be applied to any design of femoral component.
The Articular Surface Replacement (ASR) hip resurfacing arthroplasty has a failure rate of 12.0% at five years, compared with 4.3% for the Birmingham Hip Resurfacing (BHR). We analysed 66 ASR and 64 BHR explanted metal-on-metal hip replacements with the aim of understanding their mechanisms of failure. We measured the linear wear rates of the acetabular and femoral components and analysed the clinical cause of failure, pre-revision blood metal ion levels and orientation of the acetabular component. There was no significant difference in metal ion levels (chromium, p = 0.82; cobalt, p = 0.40) or head wear rate (p = 0.14) between the two groups. The ASR had a significantly increased rate of wear of the acetabular component (p = 0.03) and a significantly increased occurrence of edge loading (p <
0.005), which can be attributed to differences in design between the ASR and BHR. The effects of differences in design on the
Complications involving the patellofemoral joint,
caused by malrotation of the femoral component during total knee replacement,
are an important cause of persistent pain and failure leading to
revision surgery. The aim of this study was to determine and quantify
the influence of femoral component malrotation on patellofemoral
wear, and to determine whether or not there is a difference in the
rate of wear of the patellar component when articulated against
oxidised zirconium (OxZr) and cobalt-chrome (CoCr) components. An The results suggest that patellar maltracking due to an internally
rotated femoral component leads to an increased mean patellar wear.
Although not statistically significant, the mean wear production
may be lower for OxZr than for CoCr components.