Advertisement for orthosearch.org.uk
Results 1 - 50 of 64
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1575 - 1580
1 Nov 2013
Salai M Somjen D Gigi R Yakobson O Katzburg S Dolkart O

We analysed the effects of commonly used medications on human osteoblastic cell activity in vitro, specifically proliferation and tissue mineralisation. A list of medications was retrieved from the records of patients aged > 65 years filed in the database of the largest health maintenance organisation in our country (> two million members). Proliferation and mineralisation assays were performed on the following drugs: rosuvastatin (statin), metformin (antidiabetic), metoprolol (β-blocker), citalopram (selective serotonin reuptake inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)). All tested drugs significantly stimulated DNA synthesis to varying degrees, with rosuvastatin 5 µg/ml being the most effective among them (mean 225% (sd 20)), compared with metformin 10 µg/ml (185% (sd 10)), metoprolol 0.25 µg/ml (190% (sd 20)), citalopram 0.05 µg/ml (150% (sd 10)) and omeprazole 0.001 µg/ml (145% (sd 5)). Metformin and metoprolol (to a small extent) and rosuvastatin (to a much higher extent) inhibited cell mineralisation (85% (sd 5)). Our results indicate the need to evaluate the medications prescribed to patients in terms of their potential action on osteoblasts. Appropriate evaluation and prophylactic treatment (when necessary) might lower the incidence and costs associated with potential medication-induced osteoporosis.

Cite this article: Bone Joint J 2013;95-B:1575–80.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1614 - 1620
1 Nov 2010
Fini M Tschon M Ronchetti M Cavani F Bianchi G Mercuri M Alberghini M Cadossi R

Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases


The Journal of Bone & Joint Surgery British Volume
Vol. 59-B, Issue 3 | Pages 342 - 348
1 Aug 1977
Muscolo D Kawai S Ray R

In vitro studies on isolated bone cells were undertaken to investigate the presence of transplantation (histocompatibility) antigens. Bone cells were cultured with allogeneic lymphocytes and exposed to cytotoxic sera containing antibodies against transplantation antigens, to determine their antigenic profile. Preliminary results suggest that bone cells may not express lymphocyte stimulating antigens in an active form, at least after the isolation procedure performed. On the other hand, bone cells were killed by cytotoxic antibodies in a specific way, providing evidence for the presence of serologically defined (SD) transplantation antigens on the cell surface. Additional studies with absorbed sera suggest "sharing" of histocompatibility antigens between bone cells and lymphocytes. The relevance of the surface antigens of bone cells to clinical fields such as bone allotransplantation, susceptibility to various orthopaedic diseases and skeletal sarcomata is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1209 - 1213
1 Nov 2004
Calder JDF Buttery L Revell PA Pearse M Polak JM

Osteonecrosis of the femoral head usually affects young individuals and is responsible for up to 12% of total hip arthroplasties. The underlying pathophysiology of the death of the bone cells remains uncertain. We have investigated nitric oxide mediated apoptosis as a potential mechanism and found that steroid- and alcohol-induced osteonecrosis is accompanied by widespread apoptosis of osteoblasts and osteocytes. Certain drugs or their metabolites may have a direct cytotoxic effect on cancellous bone of the femoral head leading to apoptosis rather than purely necrosis


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 361 - 364
1 Apr 2019
Rodeo SA

Stem cells are defined by their potential for self-renewal and the ability to differentiate into numerous cell types, including cartilage and bone cells. Although basic laboratory studies demonstrate that cell therapies have strong potential for improvement in tissue healing and regeneration, there is little evidence in the scientific literature for many of the available cell formulations that are currently offered to patients. Numerous commercial entities and ‘regenerative medicine centres’ have aggressively marketed unproven cell therapies for a wide range of medical conditions, leading to sometimes indiscriminate use of these treatments, which has added to the confusion and unpredictable outcomes. The significant variability and heterogeneity in cell formulations between different individuals makes it difficult to draw conclusions about efficacy. The ‘minimally manipulated’ preparations derived from bone marrow and adipose tissue that are currently used differ substantially from cells that are processed and prepared under defined laboratory protocols. The term ‘stem cells’ should be reserved for laboratory-purified, culture-expanded cells. The number of cells in uncultured preparations that meet these defined criteria is estimated to be approximately one in 10 000 to 20 000 (0.005% to 0.01%) in native bone marrow and 1 in 2000 in adipose tissue. It is clear that more refined definitions of stem cells are required, as the lumping together of widely diverse progenitor cell types under the umbrella term ‘mesenchymal stem cells’ has created confusion among scientists, clinicians, regulators, and our patients. Validated methods need to be developed to measure and characterize the ‘critical quality attributes’ and biological activity of a specific cell formulation. It is certain that ‘one size does not fit all’ – different cell formulations, dosing schedules, and culturing parameters will likely be required based on the tissue being treated and the desired biological target. As an alternative to the use of exogenous cells, in the future we may be able to stimulate the intrinsic vascular stem cell niche that is known to exist in many tissues. The tremendous potential of cell therapy will only be realized with further basic, translational, and clinical research. Cite this article: Bone Joint J 2019;101-B:361–364


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Aims

Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus.

Methods

Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 680 - 684
1 May 2008
Simon DWN Clarkin CE Das-Gupta V Rawlinson SCF Emery RJ Pitsillides AA

We examined cultured osteoblasts derived from paired samples from the greater tuberosity and acromion from eight patients with large chronic tears of the rotator cuff. We found that osteoblasts from the tuberosity had no apparent response to mechanical stimulation, whereas those derived from the acromion showed an increase in alkaline phosphatase activity and nitric oxide release which is normally a response of bone cells to mechanical strain. By contrast, we found that cells from both regions were able to respond to dexamethasone, a well-established promoter of osteoblastic differentiation, with the expected increase in alkaline phosphatase activity. Our findings indicate that the failure of repair of the rotator cuff may be due, at least in part, to a compromised capacity for mechanoadaptation within the greater tuberosity. It remains to be seen whether this apparent decrease in the sensitivity of bone cells to mechanical stimulation is the specific consequence of the reduced load-bearing history of the greater tuberosity in these patients


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 444 - 451
1 Apr 2022
Laende EK Mills Flemming J Astephen Wilson JL Cantoni E Dunbar MJ

Aims

Thresholds of acceptable early migration of the components in total knee arthroplasty (TKA) have traditionally ignored the effects of patient and implant factors that may influence migration. The aim of this study was to determine which of these factors are associated with overall longitudinal migration of well-fixed tibial components following TKA.

Methods

Radiostereometric analysis (RSA) data over a two-year period were available for 419 successful primary TKAs (267 cemented and 152 uncemented in 257 female and 162 male patients). Longitudinal analysis of data using marginal models was performed to examine the associations of patient factors (age, sex, BMI, smoking status) and implant factors (cemented or uncemented, the size of the implant) with maximum total point motion (MTPM) migration. Analyses were also performed on subgroups based on sex and fixation.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 508 - 515
1 May 1999
Yamazaki M Nakajima F Ogasawara A Moriya H Majeska RJ Einhorn TA

The multifunctional adhesion molecule CD44 is a major cell-surface receptor for hyaluronic acid (HUA). Recent data suggest that it may also bind the ubiquitous bone-matrix protein, osteopontin (OPN). Because OPN has been shown to be a potentially important protein in bone remodelling, we investigated the hypothesis that OPN interactions with the CD44 receptor on bone cells participate in the regulation of the healing of fractures. We examined the spatial and temporal patterns of expression of OPN and CD44 in healing fractures of rat femora by in situ hybridisation and immunohistochemistry. We also localised HUA in the fracture callus using biotinylated HUA-binding protein. OPN was expressed in remodelling areas of the hard callus and was found in osteocytes, osteoclasts and osteoprogenitor cells, but not in cuboidal osteoblasts which were otherwise shown to express osteocalcin. The OPN signal in osteocytes was not uniformly distributed, but was restricted to specific regions near sites where OPN mRNA-positive osteoclasts were attached to bone surfaces. In the remodelling callus, intense immunostaining for CD44 was detected in osteocyte lacunae, along canaliculi, and on the basolateral plasma membrane of osteoclasts, but not in the cuboidal osteoblasts. HUA staining was detected in fibrous tissues but little was observed in areas of hard callus where bone remodelling was progressing. Our findings suggest that OPN, rather than HUA, is the major ligand for CD44 on bone cells in the remodelling phase of healing of fractures. They also raise the possibility that such interactions may be involved in the communication of osteocytes with each other and with osteoclasts on bone surfaces. The interactions between CD44 and OPN may have important clinical implications in the repair of skeletal tissues


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 589 - 596
1 Mar 2021
Amin N Kraft J Fishlock A White A Holton C Kinsey S Feltbower R James B

Aims

Osteonecrosis (ON) can cause considerable morbidity in young people who undergo treatment for acute lymphoblastic leukaemia (ALL). The aims of this study were to determine the operations undertaken for ON in this population in the UK, along with the timing of these operations and any sequential procedures that are used in different joints. We also explored the outcomes of those patients treated by core decompression (CD), and compared this with conservative management, in both the pre- or post-collapse stages of ON.

Methods

UK treatment centres were contacted to obtain details regarding surgical interventions and long-term outcomes for patients who were treated for ALL and who developed ON in UKALL 2003 (the national leukaemia study which recruited patients aged 1 to 24 years at diagnosis of ALL between 2003 and 2011). Imaging of patients with ON affecting the femoral head was requested and was used to score all lesions, with subsequent imaging used to determine the final grade. Kaplan-Meier failure time plots were used to compare the use of CD with non surgical management.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 298 - 303
1 Feb 2010
Toom A Suutre S Märtson A Haviko T Selstam G Arend A

We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% (. sd. 4.5) versus 12.7% (. sd. 2.9, p < 0.019), respectively. Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification


The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 2 | Pages 340 - 351
1 May 1974
Bard DR Dickens MJ Edwards J Smith AU

1. The use of the Metals Research Macrotome for cutting 100 μ thick sections of fresh, unfixed specimens of arthritic human femoral heads and normal goat condyles is described. 2. A technique for isolating living cells from these slices by decalcification followed by enzymic digestion is reported. 3. The microscopic appearances of the fresh slices, the decalcified slices and the isolated cells as seen by incident or transmitted fluorescent lighting, by phase-contrast microscopy, by scanning electron microscopy and by histological and cytological techniques are illustrated. 4. These techniques might be applicable to the examination of biopsy specimens of pathological bone or to basic research on bone cells


The Journal of Bone & Joint Surgery British Volume
Vol. 52-B, Issue 3 | Pages 571 - 577
1 Aug 1970
Bentley G Greer RB

1. The epiphyses of the metatarsal heads of 250-gramme rabbits were separated at the zone of cell columns, stripped of perichondrium, labelled with tritiated thymidine and transplanted into the back muscles of the same animals. 2. Endochondral ossification started in the grafts at four days, was well established by seven days and progressed until fourteen days, the end of the study. 3. Progressive passage of the label down the zone of cell columns and into the hypertrophic zone was observed. 4. The tritiated-. 3. H thymidine label had disappeared from the cartilage cells by ten days. No labelling was observed in the bone cells at any stage. 5. It was not possible to demonstrate from the experiment that growth plate chondrocytes are precursors of osteoblasts in the process of endochondral ossification in rabbits


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 988 - 994
1 Nov 1997
Haynes DR Hay SJ Rogers SD Ohta S Howie DW Graves SE

Bone loss around replacement prostheses may be related to the activation of mononuclear phagocytes (MNP) by prosthetic wear particles. We investigated how osteoblast-like cells were regulated by human MNP stimulated by particles of prosthetic material. Particles of titanium-6-aluminium-4-vanadium (TiAlV) stimulated MNP to release interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6 and prostaglandin E. 2. (PGE. 2. ). All these mediators are implicated in regulating bone metabolism. Particle-activated MNP inhibited bone cell proliferation and stimulated release of IL-6 and PGE. 2. The number of cells expressing alkaline phosphatase, a marker associated with mature osteo-blastic cells, was reduced. Experiments with blocking antibodies showed that TNFα was responsible for the reduction in proliferation and the numbers of cells expressing alkaline phosphatase. By contrast, IL-1β stimulated cell proliferation and differentiation. Both IL-1β and TNFα stimulated IL-6 and PGE. 2. release from the osteoblast-like cells. Our results suggest that particle-activated mono-nuclear phagocytes can induce a change in the balance between bone formation and resorption by a number of mechanisms


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 1 | Pages 139 - 142
1 Jan 1995
Shigeno Y Ashton B

We have measured the effect of age on the rate of outgrowth of cells from human trabecular bone, using a quantitative dye-binding technique. In cultures supplemented with autologous serum, there were significant negative correlations between the age of the donor and both the proportion of fragments from which outgrowths were seen after 7 days (r = -0.70; p < 0.001) and the total cell number after 14 days (r = -0.78; p < 0.005). The autologous serum supported greater cell proliferation than did fetal calf serum in all subjects regardless of age. Taken with previous observations that the in vitro growth kinetics of passaged human bone cells are independent of age, our results show that the number of proliferative precursor cells on trabecular-bone surfaces is higher in younger subjects. There is a marked decrease in precursor numbers in the second and third decades of life to a level which is maintained into old age


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1033 - 1034
1 Sep 2019
Rodeo S Haddad FS


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1054 - 1061
1 Sep 2002
Bhandari M Schemitsch EH

High-pressure lavage produces greater visible damage to bone at a macroscopic and microscopic level when compared with low-pressure lavage and can result in delay in the healing of fractures. Osteoblasts and adipocytes are derived from mesenchymal stem cells. Conditions which lead to bone loss often involve a switch from the osteoblast to adipocyte lineage. We have therefore examined the effect of high- and low-pressure irrigation on the differentiation of adipocytes. Calvaria-derived bone cells were exposed to either low-pressure or high-pressure irrigation with normal saline. After 14 days the cells were fixed and the osteoblasts and adipocytes quantified using Oil Red O to stain cytoplasmic lipid droplets (triglycerides) in the cells. Osteoblasts were quantified using a commercially available alkaline-phosphatase staining assay. A standard quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed. Messenger RNA levels for osteocalcin, a marker of osteoblasts, and PPARγ2, a marker of adipocytes, were measured. High-pressure lavage resulted in an increase in adipogenesis of 50% when compared with low-pressure lavage. Our findings suggest that high-pressure lavage may promote differentiation of mesenchymal stem cells towards the adipoctye lineage. This may have clinical significance in the development of delayed and nonunion after treatment of fractures of long bones


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 124 - 129
1 Jan 2001
Lofthouse RA Davis JR Frondoza CG Jinnah RH Hungerford DS Hare JM

Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the osteoblast has been widely studied in an effort to understand the signalling pathways by which it responds to extracellular stimuli. Our aim in this study was to identify caveolae and their structural protein caveolin in normal human osteoblasts, and to determine which subtypes of caveolin were present. Confocal microscopy showed staining which was associated with the plasma membrane. Transmission electron microscopy revealed the presence of membrane invaginations of 50 to 100 nm, consistent with the appearance of caveolae. Finally, we isolated protein from these osteoblasts, and performed Western blotting using anti-caveolin primary antibodies. This revealed the presence of caveolin-1 and -2, while caveolin-3 was absent. The identification of these structures and their associated protein may provide a significant contribution to our further understanding of signal transduction pathways in osteoblasts


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 824 - 830
1 Sep 1997
Yasui N Sato M Ochi T Kimura T Kawahata H Kitamura Y Nomura S

We developed a rat model of limb lengthening to study the basic mechanism of distraction osteogenesis, using a small monolateral external fixator. In 11-week-old male rats we performed a subperiosteal osteotomy in the midshaft of the femur with distraction at 0.25 mm every 12 hours from seven days after operation. Radiological and histological examinations showed a growth zone of constant thickness in the middle of the lengthened segment, with formation of new bone at its proximal and distal ends. Osteogenic cells were arranged longitudinally along the tension vector showing the origin and the fate of individual cells in a single section. Typical endochondral bone formation was prominent in the early stage of distraction, but intramembraneous bone formation became the predominant mechanism of ossification at later stages. We also showed a third mechanism of ossification, ‘transchondroid bone formation’. Chondroid bone, a tissue intermediate between bone and cartilage, was formed directly by chondrocyte-like cells, with transition from fibrous tissue to bone occurring gradually and consecutively without capillary invasion. In situ hybridisation using digoxigenin-11-UTP-labelled complementary RNAs showed that the chondroid bone cells temporarily expressed type-II collagen mRNA. They did not show the classical morphological characteristics of chondrocytes, but were assumed to be young chondrocytes undergoing further differentiation into bone-forming cells. We found at least three different modes of ossification during bone lengthening by distraction osteogenesis. We believe that this is the first report of such a rat model, and have shown the validity of in situ hybridisation techniques for the study of the cellular and molecular mechanisms involved in distraction osteogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 2 | Pages 304 - 318
1 May 1965
Urist MR Wallace TH Adams T

1. Autografts, isografts and homografts of fibrocartilaginous callus were observed in the anterior chamber of the eye in rats. Proliferation of cartilage ceased, endochondral ossification followed, and the end-product was a new and complete ossicle with a cortex and a marrow cavity. The size and shape of the ossicle was determined by the size and shape of the sample of callus. Thus the callus in the eye performed the function of a cartilage model like that of the developing epiphysis or a healing fracture of a long bone. 2. Fibrocartilaginous callus, heavily labelled with . 3. H-thymidine, was transplanted to the eye twenty-four hours after the last injection, when there was little if any radioactive thymidine circulating in the blood. A few small chondrocytes with labelled nuclei persisted in the cores of new bone trabeculae, but the largest part of the labelled callus was resorbed and replaced by unlabelled new bone. 3. Homografts of labelled callus produced the same results as autografts at twenty-five days, but between twenty-five and forty-five days the donor cells were destroyed by the immune response of the host. 4. Isogenous transplants in host rats treated with . 3. H-thymidine between nine and thirteen days, when the callus was invaded by new blood vessels, produced many osteogenetic cells with labelled nuclei and made it possible to trace the origin of the new bone. The label appeared in the progenitor cells within twenty-four hours. While remaining thereafter in progenitor cells, it appeared also in osteoclasts (or chondroclasts) and osteoblasts in forty-eight to seventy-two hours, and in osteocytes in ninety-six to 120 hours. Chondrocytes did not proliferate and were not labelled in the eye. 5. Homogenous transplants in host rats treated with . 3. H-thymidine between five and one days before the operation also produced new bone, but contained no labelled osteoprogenitor or bone cells after twenty-five days in the eye. At forty-five days the donor tissue had been destroyed by the immune response of the host. 6. Devitalised callus was encapsulated in inflammatory connective tissue and scar. When the dead callus was absorbed by the capillaries of the host new bone formation by induction produced a scanty deposit as a delayed event in a few instances. 7. Irrespective of whether it originated in the donor or the host, a connective-tissue cell type that proliferated rapidly and became labelled with . 3. H-thymidine was identified as a progenitor cell. Differentiation and specialisation as osteoprogenitor cells occurred after the growth of blood vessels into the interior of the callus, and developed inside of excavation chambers in cartilage. Except that the interaction of the donor tissue and host cells leading to new bone formation by induction takes place in the interior of the excavation chamber, the biophysico-chemical mechanism is unknown


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 3 | Pages 453 - 463
1 Aug 1962
Casuccio C

Relating the results of our investigations to the knowledge hitherto acquired about the etiology of osteoporosis (which I have already referred to), I am inclined to interpret the pathogenesis of osteoporosis in the following way: 1) Primary osteoblastic deficiency: congenital (Lobstein); involutive (senile osteoporosis?); 2) Reduced osteoblastic activity from absence of trophic stimuli: (inactivity, ovarian agenesia, eunuchoidism, menopause); 3) Reduced osteoblastic activity from inhibitory stimuli: (cortisone, adrenocorticotrophic hormone (A.C.T.H.), stress, Cushing's disease, thyrotoxicosis); 4) Normal osteoblastic activity but insufficiency of constructive material: (malnutrition, disturbances of the digestive system, insufficiency of vitamin C, diabetes, thyrotoxicosis, cortisone, A.C.T.H., stress, Cushing's disease). Osteoporosis may therefore be the consequence either of a congenital osteoblastic deficiency, such as that found in cases of osteogenesis imperfecta, or of reduced osteoblastic activity due to absence of trophic stimuli such as mechanical stress and the sex hormones, or of reduced activity of the bone cells due to anti-anabolic substances which inhibit them, such as cortisone and its derivatives and the thyroid hormone in strong doses, or lastly of reduced availability of construction material due to its introduction in reduced quantities (starvation, dysfunction of the digestive system) or due to hindering of synthesis (deficiency of vitamin C, diabetes, cortisone and its derivatives) or due to an excessive degree of destruction (thyrotoxicosis). In the case of anti-anabolic hormones from the adrenal cortex, the mechanism may thus be twofold: inhibition of the osteoblasts and deprivation of the osteoblasts of glucoprotein material due to a general anomaly of metabolism. This may perhaps explain the most serious forms of bone atrophy which are usually observable in cases of hyperfunction of the adrenal cortex. Senile osteoporosis should, in my opinion, be included in the first of our groups because it cannot be said to be brought about by any of the causes usually cited for osteoporosis– such as deficiency of sex hormones, excess of hormones from the adrenal cortex, deficiency of calcium, etc.–and in all probability it will depend on a progressive involution of the osteoblasts brought about by old age. Senile involution is an expression of the descending phase of life's parabola and it involves all the organs and all the parenchymatous tissues in the human body, but it does not cause a parallel reduction of functions and activities on all of them equally. The skeletal system is one of the first to feel these reductions, because in old age life necessarily becomes less intense. Consequently in the economy of the ageing subject the generally reduced level of metabolism brings about a sort of selection in the nourishment of the different organs and systems, and sometimes almost a dismantling of some of these in an attempt to fall in with the new and reduced level of activities of some of the parenchymatous tissues, activities which may be incomplete or even transferred elsewhere. We believe that the moment which originally determines the beginning of senile osteoporosis coincides with the involutional process of cellular metabolism that strikes at all parenchymatous tissue during old age–striking, in the case of osteoporosis, hardest of all at the bony tissues. There is, indeed, no doubt that certain essential processes of cellular metabolism do alter with age, and that the reduction in the activity of the gonads does have considerable importance. In any case, just as adolescence and old age cannot be explained only in terms of gonadal activity, so the involution of the skeleton cannot be due merely to the involution of the gonads. How should one then interpret the well known benefit afforded by administration of sex hormones in cases of osteoporosis? Probably the action of oestrogens and androgens is, in this case, of a pharmacological nature, and comparable, for instance, to the action of digitalis on the cardiac muscle. It will be remembered how digitalis acts almost exclusively on myofibrils which have become inadequate, and has little or no effect on a normal myocardium. Similarly, the sex hormones would seem to exert a stimulating action on osteoblasts that are on the way to involution, while they exert little or no action on normal osteoblasts. In support of this we have the findings of Urist and other workers, who demonstrated that the administration of sex hormones produces calcium and nitrogen retention only in osteoporotics, while in non-osteoporotic subjects of the same age it produces no effect. On the other hand, the action of the sex hormones might act in cases of senile osteoporosis by returning the changed level of protein metabolism to normal. From the data in the literature and from the results of our own investigations, I conclude that osteoporosis in general, and senile osteoporosis in particular, are first and foremost the result of a disturbance in the metabolism of bone, and that the metabolic disturbance is closely and exclusively related to the degree of activity and the state of activity of the cells in the bone. Lastly, I believe that senile osteoporosis should not be considered an actual disease but rather as one limited aspect of the normal descending parabola which affects to a greater or less degree all the tissues of the body


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 269 - 270
1 Mar 2018
Rowan FE Haddad FS


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 635 - 642
1 Aug 1986
Nilsson O Urist M Dawson E Schmalzried T Finerman G

In dogs, resection of a length of the ulna equal to twice the diameter of the mid-shaft leaves a defect which consistently fails to unite. In response to an implant of 100 mg of bovine bone morphogenetic protein (BMP), the defect becomes filled by callus consisting of fibrocartilage, cartilage and woven bone within four weeks. The cartilage is resorbed and replaced by new bone in four to eight weeks. Woven bone is then resorbed, colonised by bone marrow cells and remodelled into lamellar bone. Union of the defect is produced by 12 weeks. Control defects filled with autogeneic cortical bone chips unite after the same period. In regeneration induced by bone morphogenetic protein (BMP) and in repair enhanced by bone graft, union depends upon the proliferation of cells within and around the bone ends. Our working hypothesis is that BMP induces the differentiation of perivascular connective tissue cells into chondroblasts and osteoprogenitor cells and thereby augments the process of bone regeneration from the cells already present in the endosteum and periosteum


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1267 - 1279
1 Oct 2017
Chughtai M Piuzzi NS Khlopas A Jones LC Goodman SB Mont MA

Non-traumatic osteonecrosis of the femoral head is a potentially devastating condition, the prevalence of which is increasing. Many joint-preserving forms of treatment, both medical and surgical, have been developed in an attempt to slow or reverse its progression, as it usually affects young patients.

However, it is important to evaluate the best evidence that is available for the many forms of treatment considering the variation in the demographics of the patients, the methodology and the outcomes in the studies that have been published, so that it can be used effectively.

The purpose of this review, therefore, was to provide an up-to-date, evidence-based guide to the management, both non-operative and operative, of non-traumatic osteonecrosis of the femoral head.

Cite this article: Bone Joint J 2017;99-B:1267–79.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1611 - 1619
1 Dec 2016
Wilson MJ Hook S Whitehouse SL Timperley AJ Gie GA

Aims

Femoral impaction bone grafting was first developed in 1987 using morselised cancellous bone graft impacted into the femoral canal in combination with a cemented, tapered, polished stem. We describe the evolution of this technique and instrumentation since that time.

Patients and Methods

Between 1987 and 2005, 705 revision total hip arthroplasties (56 bilateral) were performed with femoral impaction grafting using a cemented femoral stem. All surviving patients were prospectively followed for a mean of 14.7 years (9.8 to 28.3) with no loss to follow-up. By the time of the final review, 404 patients had died.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 987 - 996
1 Aug 2009
Alsousou J Thompson M Hulley P Noble A Willett K

Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches.

The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 318 - 323
1 Mar 2015
Verdonk P Dhollander A Almqvist KF Verdonk R Victor J

The treatment of osteochondral lesions is of great interest to orthopaedic surgeons because most lesions do not heal spontaneously. We present the short-term clinical outcome and MRI findings of a cell-free scaffold used for the treatment of these lesions in the knee. A total of 38 patients were prospectively evaluated clinically for two years following treatment with an osteochondral nanostructured biomimetic scaffold. There were 23 men and 15 women; the mean age of the patients was 30.5 years (15 to 64). Clinical outcome was assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Tegner activity scale and a Visual Analgue scale for pain. MRI data were analysed based on the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) scoring system at three, 12 and 24 months post-operatively. There was a continuous significant clinical improvement after surgery. In two patients, the scaffold treatment failed (5.3%) There was a statistically significant improvement in the MOCART precentage scores. The repair tissue filled most of the defect sufficiently. We found subchondral laminar changes in all patients. Intralesional osteophytes were found in two patients (5.3%). We conclude that this one-step scaffold-based technique can be used for osteochondral repair. The surgical technique is straightforward, and the clinical results are promising. The MRI aspects of the repair tissue continue to evolve during the first two years after surgery. However, the subchondral laminar and bone changes are a concern.

Cite this article: Bone Joint J 2015; 97-B:318–23.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 177 - 184
1 Feb 2015
Felden A Vaz G Kreps S Anract P Hamadouche M Biau DJ

Conventional cemented acetabular components are reported to have a high rate of failure when implanted into previously irradiated bone. We recommend the use of a cemented reconstruction with the addition of an acetabular reinforcement cross to improve fixation.

We reviewed a cohort of 45 patients (49 hips) who had undergone irradiation of the pelvis and a cemented total hip arthroplasty (THA) with an acetabular reinforcement cross. All hips had received a minimum dose of 30 Gray (Gy) to treat a primary nearby tumour or metastasis. The median dose of radiation was 50 Gy (Q1 to Q3: 45 to 60; mean: 49.57, 32 to 72).

The mean follow-up after THA was 51 months (17 to 137). The cumulative probability of revision of the acetabular component for a mechanical reason was 0% (0 to 0%) at 24 months, 2.9% (0.2 to 13.3%) at 60 months and 2.9% (0.2% to 13.3%) at 120 months, respectively. One hip was revised for mechanical failure and three for infection.

Cemented acetabular components with a reinforcement cross provide good medium-term fixation after pelvic irradiation. These patients are at a higher risk of developing infection of their THA.

Cite this article: Bone Joint J 2015;97-B:177–84.


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 121 - 128
1 Jan 2015
Kang S Han I Hong SH Cho HS Kim W Kim H

Cancellous allograft bone chips are commonly used in the reconstruction of defects in bone after removal of benign tumours. We investigated the MRI features of grafted bone chips and their change over time, and compared them with those with recurrent tumour. We retrospectively reviewed 66 post-operative MRIs from 34 patients who had undergone curettage and grafting with cancellous bone chips to fill the defect after excision of a tumour. All grafts showed consistent features at least six months after grafting: homogeneous intermediate or low signal intensities with or without scattered hyperintense foci (speckled hyperintensities) on T1 images; high signal intensities with scattered hypointense foci (speckled hypointensities) on T2 images, and peripheral rim enhancement with or without central heterogeneous enhancements on enhanced images. Incorporation of the graft occurred from the periphery to the centre, and was completed within three years. Recurrent lesions consistently showed the same signal intensities as those of pre-operative MRIs of the primary lesions. There were four misdiagnoses, three of which were chondroid tumours.

We identified typical MRI features and clarified the incorporation process of grafted cancellous allograft bone chips. The most important characteristics of recurrent tumours were that they showed the same signal intensities as the primary tumours. It might sometimes be difficult to differentiate grafted cancellous allograft bone chips from a recurrent chondroid tumour.

Cite this article: Bone Joint J 2015;97-B:121–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 10 | Pages 1433 - 1438
1 Oct 2012
Lam W Guo X Leung K Kwong KSC

This study was designed to test the hypothesis that the sensory innervation of bone might play an important role in sensing and responding to low-intensity pulsed ultrasound and explain its effect in promoting fracture healing. In 112 rats a standardised mid-shaft tibial fracture was created, supported with an intramedullary needle and divided into four groups of 28. These either had a sciatic neurectomy or a patellar tendon resection as control, and received the ultrasound or not as a sham treatment. Fracture union, callus mineralisation and remodelling were assessed using plain radiography, peripheral quantitative computed tomography and histomorphology.

Daily ultrasound treatment significantly increased the rate of union and the volumetric bone mineral density in the fracture callus in the neurally intact rats (p = 0.025), but this stimulating effect was absent in the rats with sciatic neurectomy. Histomorphology demonstrated faster maturation of the callus in the group treated with ultrasound when compared with the control group. The results supported the hypothesis that intact innervation plays an important role in allowing low-intensity pulsed ultrasound to promote fracture healing.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 841 - 851
1 Jul 2006
Lee EH Hui JHP


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1289 - 1295
1 Oct 2011
Yoon RS Hwang JS Beebe KS

For over a decade, bisphosphonate administration has evolved and become the cornerstone of the prevention and treatment of fragility fractures. Millions of post-menopausal women have relied on, and continue to depend on, the long-acting, bone density-maintaining pharmaceutical drug to prevent low-energy fractures. In return, we have seen the number of fragility fractures decrease, along with associated costs and emotional benefits. However, with any drug, there are often concerns with side effects and complications, and this unique drug class is seeing one such complication in atypical subtrochanteric femoral fracture, counterproductive to that which it was designed to prevent. This has created concern over long-term bisphosphonate administration and its potential link to these atypical fractures. There is controversial evidence surrounding such a definitive link, and no protocol for managing these fractures.

This review offers the latest information regarding this rare but increasingly controversial adverse effect and its potential connection to one of the most successful forms of treatment that is available for the management of fragility fractures.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 966 - 972
1 Jul 2008
Kawasumi M Kitoh H Siwicka KA Ishiguro N

The aim of our study was to investigate the effect of platelet-rich plasma on the proliferation and differentiation of rat bone-marrow cells and to determine an optimal platelet concentration in plasma for osseous tissue engineering. Rat bone-marrow cells embedded in different concentrations of platelet-rich plasma gel were cultured for six days. Their potential for proliferation and osteogenic differentiation was analysed. Using a rat limb-lengthening model, the cultured rat bone-marrow cells with platelet-rich plasma of variable concentrations were transplanted into the distraction gap and the quality of the regenerate bone was evaluated radiologically.

Cellular proliferation was enhanced in all the platelet-rich plasma groups in a dose-dependent manner. Although no significant differences in the production and mRNA expression of alkaline phosphatase were detected among these groups, mature bone regenerates were more prevalent in the group with the highest concentration of platelets.

Our results indicate that a high platelet concentration in the platelet-rich plasma in combination with osteoblastic cells could accelerate the formation of new bone during limb-lengthening procedures.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 16 - 20
1 Jan 2007
Gill HS Campbell PA Murray DW De Smet KA

Resurfacing arthroplasty of the hip is being used increasingly as an alternative to total hip replacement, especially for young active patients. There is concern about necrosis of the femoral head after resurfacing which can result in fracture and loosening. Most systems use a cemented femoral component, with the potential for thermal necrosis of the cancellous bone of the reamed femoral head. We used thermal probes to record temperatures close to the cement-bone interface during resurfacing arthroplasty.

The maximum temperature recorded at the cement-bone interface in four cases was approximately 68°C which was higher than that reported to kill osteocytes. A modified surgical technique using insertion of a suction cannula into the lesser trochanter, generous pulsed lavage and early reduction of the joint significantly reduced the maximum recorded cancellous bone temperature to approximately 36°C in five cases (p = 0.014).

We recommend the modified technique since it significantly reduces temperatures at the cement-bone interface.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 583 - 597
1 May 2013
Kurien T Pearson RG Scammell BE

We reviewed 59 bone graft substitutes marketed by 17 companies currently available for implantation in the United Kingdom, with the aim of assessing the peer-reviewed literature to facilitate informed decision-making regarding their use in clinical practice. After critical analysis of the literature, only 22 products (37%) had any clinical data. Norian SRS (Synthes), Vitoss (Orthovita), Cortoss (Orthovita) and Alpha-BSM (Etex) had Level I evidence. We question the need for so many different products, especially with limited published clinical evidence for their efficacy, and conclude that there is a considerable need for further prospective randomised trials to facilitate informed decision-making with regard to the use of current and future bone graft substitutes in clinical practice.

Cite this article: Bone Joint J 2013;95-B:583–97.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1118 - 1122
1 Aug 2010
Lee JS Suh KT Eun IS

Low bone mass and osteopenia have been described in the axial and peripheral skeleton of patients with adolescent idiopathic scoliosis (AIS). Recently, many studies have shown that gene polymorphism is related to osteoporosis. However, no studies have linked the association between IL6 gene polymorphism and bone mass in AIS. This study examined the association between bone mass and IL6 gene polymorphism in 198 girls with AIS. The polymorphisms of IL6-597 G→A, IL6-572 G→C and IL6-174 G→A and the bone mineral density in the lumbar spine and femoral neck were analysed and compared with their levels in healthy controls. The mean bone mineral density at both sites in patients with AIS was decreased compared with controls (p = 0.0022 and p = 0.0013, respectively). Comparison of genotype frequencies between AIS and healthy controls revealed a statistically significant difference in IL6-572 G→C polymorphism (p = 0.0305). There was a significant association between the IL6-572 G→C polymorphism and bone mineral density in the lumbar spine, with the CC genotype significantly higher with the GC (p = 0.0124) or GG (p = 0.0066) genotypes.

These results suggest that the IL6-572 G→C polymorphism is associated with bone mineral density in the lumbar spine in Korean girls with AIS.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 131 - 139
1 Jan 2011
Daugaard H Elmengaard B Andreassen TT Baas J Bechtold JE Soballe K

Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant.

Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters.

These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 565 - 576
1 May 2009
Getgood A Brooks R Fortier L Rushton N

Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1623 - 1627
1 Dec 2009
Bubbar V Heras FL Amato D Pritzker KPH Gross AE

Total hip replacement in patients with Gaucher’s disease with symptomatic osteonecrosis of the femoral head is controversial because of the high early failure rates. We describe four patients who had an uncemented total hip replacement following enzyme replacement therapy for a median of two years and one month (1 to 9.8 years) prior to surgery, and who remained on treatment. At operation, the bone had a normal appearance and consistency. Histopathological examination showed that, compared with previous biopsies of untreated Gaucher’s disease, the Gaucher cell infiltrate had decreased progressively with therapy, being replaced by normal adipose tissue. The surfaces of viable bone beyond the osteonecrotic areas showed osteoblasts, indicating remodelling. In one case acetabular revision was carried out after 11 years and eight months. The three remaining patients had a mean follow-up of six years and four months (3.3 to 12 years). We recommend initiating enzyme replacement therapy at least one to two years prior to total hip replacement to facilitate bone remodelling and to allow implantation of uncemented components in these young patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 896 - 902
1 Jul 2005
Hernigou P Poignard A Manicom O Mathieu G Rouard H


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 9 | Pages 1292 - 1297
1 Sep 2005
Lietman SA Inoue N Rafiee B Deitz LW Chao EYS

We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone.

Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group.

These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 691 - 699
1 May 2009
Amin AK Huntley JS Simpson AHRW Hall AC

The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p < 0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p > 0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture.

The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 973 - 979
1 Jul 2008
Savadkoohi DG Sadeghipour P Attarian H Sardari S Eslamifar A Shokrgozar MA

Curettage and packing with polymethylmethacrylate cement is a routine treatment for giant-cell tumour (GCT) of bone. We performed an in vitro evaluation of the cytotoxic effect of a combination of cement and methotrexate, doxorubicin and cisplatin on primary cell cultures of stromal GCT cells obtained from five patients. Cement cylinders containing four different concentrations of each drug were prepared, and the effect of the eluted drugs was examined at three different time intervals.

We found that the cytotoxic effect of eluted drugs depended on their concentration and the time interval, with even the lowest dose of each drug demonstrating an acceptable rate of cytotoxicity. Even in low doses, cytotoxic drugs mixed with polymethylmethacrylate cement could therefore be considered as effective local adjuvant treatment for GCTs.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1253 - 1260
1 Sep 2007
Karachalios T Boursinos L Poultsides L Khaldi L Malizos KN

We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures.

A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks.

In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect.

Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1272 - 1278
1 Oct 2006
Giannoudis PV Schneider E

Despite advances in the prevention and treatment of osteoporotic fractures, their prevalence continues to increase. Their operative treatment remains a challenge for the surgeon, often with unpredictable outcomes. This review highlights the current aspects of management of these fractures and focuses on advances in implant design and surgical technique.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 421 - 426
1 Apr 2006
Pountos I Jones E Tzioupis C McGonagle D Giannoudis PV