Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 748 - 752
1 Jul 2002
Berlemann U Ferguson SJ Nolte L Heini PF

Vertebroplasty, which is the percutaneous injection of bone cement into vertebral bodies has recently been used to treat painful osteoporotic compression fractures. Early clinical results have been encouraging, but very little is known about the consequences of augmentation with cement for the adjacent, non-augmented level.

We therefore measured the overall failure, strength and structural stiffness of paired osteoporotic two-vertebra functional spine units (FSUs). One FSU of each pair was augmented with polymethyl-methacrylate bone cement in the caudal vertebra, while the other served as an untreated control.

Compared with the controls, the ultimate failure load for FSUs treated by injection of cement was lower. The geometric mean treated/untreated ratio of failure load was 0.81, with 95% confidence limits from 0.70 to 0.92, (p < 0.01). There was no significant difference in overall FSU stiffness. For treated FSUs, there was a trend towards lower failure loads with increased filling with cement (r2 = 0.262, p = 0.13).

The current practice of maximum filling with cement to restore the stiffness and strength of a vertebral body may provoke fractures in adjacent, non-augmented vertebrae. Further investigation is required to determine an optimal protocol for augmentation.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 351 - 359
1 Mar 1998
Lund T Oxland TR Jost B Cripton P Grassmann S Etter C Nolte L

We performed a biomechanical study on human cadaver spines to determine the effect of three different interbody cage designs, with and without posterior instrumentation, on the three-dimensional flexibility of the spine. Six lumbar functional spinal units for each cage type were subjected to multidirectional flexibility testing in four different configurations: intact, with interbody cages from a posterior approach, with additional posterior instrumentation, and with cross-bracing. The tests involved the application of flexion and extension, bilateral axial rotation and bilateral lateral bending pure moments. The relative movements between the vertebrae were recorded by an optoelectronic camera system.

We found no significant difference in the stabilising potential of the three cage designs. The cages used alone significantly decreased the intervertebral movement in flexion and lateral bending, but no stabilisation was achieved in either extension or axial rotation. For all types of cage, the greatest stabilisation in flexion and extension and lateral bending was achieved by the addition of posterior transpedicular instrumentation. The addition of cross-bracing to the posterior instrumentation had a stabilising effect on axial rotation. The bone density of the adjacent vertebral bodies was a significant factor for stabilisation in flexion and extension and in lateral bending.