The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0).Aims
Methods
The aim of this study was to investigate the effect of a posterior
malleolar fragment (PMF), with <
25% ankle joint surface, on
pressure distribution and joint-stability. There is still little
scientific evidence available to advise on the size of PMF, which
is essential to provide treatment. To date, studies show inconsistent
results and recommendations for surgical treatment date from 1940. A total of 12 cadaveric ankles were assigned to two study groups.
A trimalleolar fracture was created, followed by open reduction
and internal fixation. PMF was fixed in Group I, but not in Group
II. Intra-articular pressure was measured and cyclic loading was
performed.Aims
Materials and Methods
We report the ten-year results for three designs of stem in 240 total hip replacements, for which subsidence had been measured on plain radiographs at regular intervals. Accurate migration patterns could be determined by the method of Einzel-Bild-Roentgen-Analyse-femoral component analysis (EBRA-FCA) for 158 hips (66%). Of these, 108 stems (68%) remained stable throughout, and five (3%) started to migrate after a median of 54 months. Initial migration of at least 1 mm was seen in 45 stems (29%) during the first two years, but these then became stable. We revised 17 stems for aseptic loosening, and 12 for other reasons. Revision for aseptic loosening could be predicted by EBRA-FCA with a sensitivity of 69%, a specificity of 80%, and an accuracy of 79% by the use of a threshold of subsidence of 1.5 mm during the first two years. Similar observations over a five-year period allowed the long-term outcome to be predicted with an accuracy of 91%. We discuss the importance of four different patterns of subsidence and confirm that the early measurement of migration by a reasonably accurate method can help to predict long-term outcome. Such methods should be used to evaluate new and modified designs of prosthesis.
We report a prospective, stratified study of 60 PCA-cups and 60 RM-polyethylene cups which have been followed for a median time of 90 months, with annual radiography. The radiological migration of cups was measured by the computer-assisted EBRA method. A number of threshold migration rates from 1 mm in the first year to 1 mm in five years have been assessed and related to clinically determined revision rates. A total of 28 cups showed a total migration of 1 mm or more within the first two years; 13 of these cups have required revision and been exchanged. The survival curves of cups which had previously shown early migration were considerably different from those without early migration. For cups with a migration of less than 1 mm within the first two years the mean survival at 96 months was 0.96 ± 0.02; for migrating cups, it was 0.63 ± 0.11 (log-rank test, p = 0.0001; chi-square value = 39.4). Early migration is a good predictor for late loosening of hip sockets.