Advertisement for orthosearch.org.uk
Results 1 - 20 of 101
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 54 - 58
1 May 2024
Wassilew GI Zimmerer A Fischer M Nonnenmacher L O'Hara L Hube R

Aims. The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. Methods. We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0). Results. The cumulative medium-term survival of the acetabular construct was 89%. Two hips (5.1%) required further revision due to shell loosening, one hip (2.6%) due to shell dislocation, and one hip (2.6%) due to infection. The median Harris Hip Score improved significantly from 47 points (IQR 41.5 to 54.9) preoperatively to 80 points (IQR 73.5 to 88.6) at the latest follow-up (p < 0.001). Conclusion. The reconstruction of Paprosky IIIB acetabular defects with porous tantalum shells and two augments using the ‘footing’ technique showed excellent medium-term results. It is a viable option for treating these challenging defects. Cite this article: Bone Joint J 2024;106-B(5 Supple B):54–58


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 82 - 88
1 May 2024
Villa JM Rajschmir K Hosseinzadeh S Manrique-Succar J Grieco P Higuera-Rueda CA Riesgo AM

Aims. Large bone defects resulting from osteolysis, fractures, osteomyelitis, or metastases pose significant challenges in acetabular reconstruction for total hip arthroplasty. This study aimed to evaluate the survival and radiological outcomes of an acetabular reconstruction technique in patients at high risk of reconstruction failure (i.e. periprosthetic joint infection (PJI), poor bone stock, immunosuppressed patients), referred to as Hip Reconstruction In Situ with Screws and Cement (HiRISC). This involves a polyethylene liner embedded in cement-filled bone defects reinforced with screws and/or plates for enhanced fixation. Methods. A retrospective chart review of 59 consecutive acetabular reconstructions was performed by four surgeons in a single institution from 18 October 2018 to 5 January 2023. Cases were classified based on the Paprosky classification, excluding type 1 cases (n = 26) and including types 2 or 3 for analysis (n = 33). Radiological loosening was evaluated by an orthopaedic surgeon who was not the operating surgeon, by comparing the immediate postoperative radiographs with the ones at latest follow-up. Mean follow-up was 557 days (SD 441; 31 to 1,707). Results. Out of the 33 cases analyzed, six (18.2%) constructs required revision, with four revisions due to uncontrolled infection, one for dislocation, and one for aseptic loosening. Among the 27 non-revised constructs, only one showed wider radiolucencies compared to immediate postoperative radiographs, indicating potential loosening. Patients who underwent revision (n = 6) were significantly younger and had a higher BMI compared to those with non-revised constructs (p = 0.016 and p = 0.026, respectively). Sex, race, ethnicity, American Society of Anesthesiologists grade, infection status (patients with postoperative PJI diagnosis (septic) vs patients without such diagnosis (aseptic)), and mean follow-up did not significantly differ between revised and non-revised groups. Conclusion. The HiRISC technique may serve as a feasible short-term (about one to two years) alternative in patients with large acetabular defects, particularly in cases of PJI. Longer follow-up is necessary to establish the long-term survival of this technique. Cite this article: Bone Joint J 2024;106-B(5 Supple B):82–88


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 179 - 185
1 Jan 2010
Väänänen P Pajamäki I Paakkala A Nurmi JT Pajamäki J

We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 311 - 316
1 Mar 2019
Löchel J Janz V Hipfl C Perka C Wassilew GI

Aims. The use of trabecular metal (TM) shells supported by augments has provided good mid-term results after revision total hip arthroplasty (THA) in patients with a bony defect of the acetabulum. The aim of this study was to assess the long-term implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. Patients and Methods. Between 2006 and 2010, 60 patients (62 hips) underwent acetabular revision using a combination of a TM shell and augment. A total of 51 patients (53 hips) had complete follow-up at a minimum of seven years and were included in the study. Of these patients, 15 were men (29.4%) and 36 were women (70.6%). Their mean age at the time of revision THA was 64.6 years (28 to 85). Three patients (5.2%) had a Paprosky IIA defect, 13 (24.5%) had a type IIB defect, six (11.3%) had a type IIC defect, 22 (41.5%) had a type IIIA defect, and nine (17%) had a type IIIB defect. Five patients (9.4%) also had pelvic discontinuity. Results. The overall survival of the acetabular component at a mean of ten years postoperatively was 92.5%. Three hips (5.6%) required further revision due to aseptic loosening, and one (1.9%) required revision for infection. Three hips with aseptic loosening failed, due to insufficient screw fixation of the shell in two and pelvic discontinuity in one. The mean Harris Hip Score improved significantly from 55 (35 to 68) preoperatively to 81 points (68 to 99) at the latest follow-up (p < 0.001). Conclusion. The reconstruction of acetabular defects with TM shells and augments showed excellent long-term results. Supplementary screw fixation of the shell should be performed in every patient. Alternative techniques should be considered to address pelvic disconinuity. Cite this article: Bone Joint J 2019;101-B:311–316


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 780 - 785
1 Jun 2015
Baauw M van Hellemondt GG van Hooff ML Spruit M

We evaluated the accuracy with which a custom-made acetabular component could be positioned at revision arthroplasty of the hip in patients with a Paprosky type 3 acetabular defect. A total of 16 patients with a Paprosky type 3 defect underwent revision surgery using a custom-made trabecular titanium implant. There were four men and 12 women with a median age of 67 years (48 to 79). The planned inclination (INCL), anteversion (AV), rotation and centre of rotation (COR) of the implant were compared with the post-operative position using CT scans. A total of seven implants were malpositioned in one or more parameters: one with respect to INCL, three with respect to AV, four with respect to rotation and five with respect to the COR. To the best of our knowledge, this is the first study in which CT data acquired for the pre-operative planning of a custom-made revision acetabular implant have been compared with CT data on the post-operative position. The results are encouraging. Cite this article: Bone Joint J 2015; 97-B:780–5


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1592 - 1596
1 Dec 2011
Babis GC Sakellariou VI Chatziantoniou AN Soucacos PN Megas P

We report the results of 62 hips in 62 patients (17 males, 45 females) with mean age of 62.4 years (37 to 81), who underwent revision of the acetabular component of a total hip replacement due to aseptic loosening between May 2003 and November 2007. All hips had a Paprosky type IIIa acetabular defect. Acetabular revision was undertaken using a Procotyl E cementless oblong implant with modular side plates and a hook combined with impaction allografting. . At a mean follow-up of 60.5 months (36 to 94) with no patients lost to follow-up and one died due to unrelated illness, the complication rate was 38.7%. Complications included aseptic loosening (19 hips), deep infection (3 hips), broken hook and side plate (one hip) and a femoral nerve palsy (one hip). Further revision of the acetabular component was required in 18 hips (29.0%) and a further four hips (6.4%) are currently loose and awaiting revision. . We observed unacceptably high rates of complication and failure in our group of patients and cannot recommend this implant or technique


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 66 - 73
1 May 2024
Chaudhry F Daud A Greenberg A Braunstein D Safir OA Gross AE Kuzyk PR

Aims. Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. Methods. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction. Results. The five-year all-cause survival for cup-cage reconstruction was 73.4% (95% confidence interval (CI) 61.4 to 85.4), while the ten- and 15-year survival was 63.7% (95% CI 46.8 to 80.6). Survival due to aseptic loosening was 93.4% (95% CI 86.2 to 100.0) at five, ten, and 15 years. The rate of revision for aseptic loosening, infection, and dislocation was 3/53 (5.7%), 7/53 (13.2%), and 6/53 (11.3%), respectively. The mean leg length discrepancy improved (p < 0.001) preoperatively from a mean of 18.2 mm (0 to 80; SD 15.8) to 7.0 mm (0 to 35; SD 9.8) at latest follow-up. The horizontal and vertical hip centres improved (p < 0.001) preoperatively from a mean of 9.2 cm (5.6 to 17.5; SD 2.3) to 10.1 cm (6.2 to 13.4; SD 2.1) and 9.3 cm (4.7 to 15.8; SD 2.5) to 8.0 cm (3.7 to 12.3; SD 1.7), respectively. Conclusion. Cup-cage reconstruction provides acceptable outcomes in the management of pelvic discontinuity. One in four constructs undergo revision within five years, most commonly for periprosthetic joint infection, dislocation, or aseptic loosening. Cite this article: Bone Joint J 2024;106-B(5 Supple B):66–73


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 47 - 53
1 May 2024
Jones SA Parker J Horner M

Aims. The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. Methods. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis. Results. A total of 105 procedures were carried out in 100 patients (five bilateral) with a mean age of 73 years (42 to 94). In the IIIA defects treated, 72.0% (36 of 50) required a porous metal augment; the remaining 14 patients were treated with a hemispherical acetabular component alone. In the IIIB defects, 63.6% (35 of 55) underwent reconstruction as planned with 20 patients who actually required a hemispherical acetabular component alone. At mean follow-up of 7.6 years, survival was 94.3% (95% confidence interval 97.4 to 88.1) for all-cause revision and the overall dislocation rate was 3.8% (4 of 105). There was no difference observed in survival between type IIIA and type IIIB defects and whether a hemispherical implant alone was used for the reconstruction or not. The mean gain in OHS was 16 points. Custom-made implants were only used in six cases, in patients with either a mega-defect in which the anteroposterior diameter > 80 mm, complex pelvic discontinuity, and massive bone loss in a small pelvis. Conclusion. Our findings suggest that a reconstruction algorithm can provide a successful approach to reconstruction in major acetabular bone loss. The use of custom implants has been defined in this series and accounts for < 5% of cases. Cite this article: Bone Joint J 2024;106-B(5 Supple B):47–53


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 296 - 300
1 Mar 2007
van Haaren EH Heyligers IC Alexander FGM Wuisman PIJM

We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation.

A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen.

These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1455 - 1462
1 Nov 2018
Munro JT Millar JS Fernandez JW Walker CG Howie DW Shim VB

Aims

Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA.

Patients and Methods

A total of 22 hemipelvis FE models were constructed in order to assess the transfer of load in 11 patients with osteolysis around the acetabular component of a THA during slow walking and a fall onto the side. There were nine men and two women. Their mean age was 69 years (55 to 81) at final follow-up. Changes in peak stress values and loads to fracture in the presence of the osteolytic defects were measured.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1555 - 1560
1 Dec 2009
Lingaraj K Teo YH Bergman N

We investigated the early results of modular porous metal components used in 23 acetabular reconstructions associated with major bone loss. The series included seven men and 15 women with a mean age of 67 years (38 to 81), who had undergone a mean of two previous revisions (1 to 7). Based on Paprosky’s classification, there were 17 type 3A and six type 3B defects. Pelvic discontinuity was noted in one case. Augments were used in 21 hips to support the shell and an acetabular component-cage construct was implanted in one case. At a mean follow-up of 41 months (24 to 62), 22 components remained well fixed. Two patients required rerevision of the liners for prosthetic joint instability. Clinically, the mean Harris Hip Score improved from 43.0 pre-operatively (14 to 86) to 75.7 post-operatively (53 to 100). The mean pre-operative Merle d’Aubigné score was 8.2 (3 to 15) and improved to a mean of 13.7 (11 to 18) post-operatively. These short-term results suggest that modular porous metal components are a viable option in the reconstruction of Paprosky type 3 acetabular defects. More data are needed to determine whether the system yields greater long-term success than more traditional methods, such as reconstruction cages and structural allografts


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 68 - 72
1 Jan 2016
Goodman GP Engh Jr CA

The custom triflange is a patient-specific implant for the treatment of severe bone loss in revision total hip arthroplasty (THA). Through a process of three-dimensional modelling and prototyping, a hydroxyapatite-coated component is created for acetabular reconstruction. There are seven level IV studies describing the clinical results of triflange components. The most common complications include dislocation and infection, although the rates of implant removal are low. Clinical results are promising given the challenging problem. We describe the design, manufacture and implantation process and review the clinical results, contrasting them to other methods of acetabular reconstruction in revision THA.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):68–72.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 158 - 162
1 Feb 2012
Sternheim A Backstein D Kuzyk PRT Goshua G Berkovich Y Safir O Gross AE

We report the use of porous metal acetabular revision shells in the treatment of contained bone loss. The outcomes of 53 patients with 50% acetabular bleeding host bone contact were compared with a control group of 49 patients with > 50% to 85% bleeding host bone contact. All patients were treated with the same type of trabecular metal acetabular revision shell. The mean age at revision was 62.4 years (42 to 80) and the mean follow-up of both groups was 72.4 months (60 to 102). Clinical, radiological and functional outcomes were assessed. There were four (7.5%) mechanical failures in the 50% host bone contact group and no failures in the > 50% host bone contact group (p = 0.068). Out of both groups combined there were four infections (3.9%) and five recurrent dislocations (4.9%) with a stable acetabular component construct that were revised to a constrained liner. Given the complexity of the reconstructive challenge, porous metal revision acetabular shells show acceptable failure rates at five to ten years’ follow-up in the setting of significant contained bone defects. This favourable outcome might be due to the improved initial stability achieved by a high coefficient of friction between the acetabular implant and the host bone, and the high porosity, which affords good bone ingrowth.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 492 - 499
1 Mar 2021
Garcia-Rey E Saldaña L Garcia-Cimbrelo E

Aims. Bone stock restoration of acetabular bone defects using impaction bone grafting (IBG) in total hip arthroplasty may facilitate future re-revision in the event of failure of the reconstruction. We hypothesized that the acetabular bone defect during re-revision surgery after IBG was smaller than during the previous revision surgery. The clinical and radiological results of re-revisions with repeated use of IBG were also analyzed. Methods. In a series of 382 acetabular revisions using IBG and a cemented component, 45 hips (45 patients) that had failed due to aseptic loosening were re-revised between 1992 and 2016. Acetabular bone defects graded according to Paprosky during the first and the re-revision surgery were compared. Clinical and radiological findings were analyzed over time. Survival analysis was performed using a competing risk analysis. Results. Intraoperative bone defect during the initial revision included 19 Paprosky type IIIA and 29 Paprosky type IIIB hips; at re-revision, seven hips were Paprosky type II, 27 type IIIA and 11 were type IIIB (p = 0.020). The mean preoperative Harris Hip Score was 45.4 (SD 6.4), becoming 80.7 (SD 12.7) at the final follow-up. In all, 12 hips showed radiological migration of the acetabular component, and three required further revision surgery. The nine-year cumulative failure incidence (nine patients at risk) of the acetabular component for further revision surgery was 9.6% (95% confidence interval (CI) 2.9 to 21.0) for any cause, and 7.5% (95% CI 1.9 to 18.5) for aseptic loosening. Hips with a greater hip height had a higher risk for radiological migration (odds ratio 1.09, 95% CI 1.02 to 1.17; p = 0.008). Conclusion. Bone stock restoration can be obtained using IBG in revision hip surgery. This technique is also useful in re-revision surgery; however, a better surgical technique including a closer distance to hip rotation centre could decrease the risk of radiological migration of the acetabular component. A longer follow-up is required to assess potential fixation deterioration. Cite this article: Bone Joint J 2021;103-B(3):492–499


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 96 - 103
1 Jan 2019
Colo E Leenders LAM Rijnen WHC Schreurs BW Hannink G

Aims. The aim of this study was to analyze the effect of a lateral rim mesh on the survival of primary total hip arthroplasty (THA) in young patients, aged 50 years or younger. Patients and Methods. We compared a study group of 235 patients (257 hips) who received a primary THA with the use of impaction bone grafting (IBG) with an additional lateral rim mesh with a group of 306 patients (343 hips) who received IBG in the absence of a lateral rim mesh during the same period from 1988 to 2015. In the mesh group, there were 74 male and 183 female patients, with a mean age of 35 years (13 to 50). In the no-mesh group, there were 173 male and 170 female patients, with a mean age of 38 years (12.6 to 50). Cox regression analyses were performed to study the effect of a lateral rim mesh on acetabular component survival. Kaplan–Meier analyses with 95% confidence intervals (CIs) were performed to estimate the survival of the acetabular implant. Results. The hazard ratio for the use of lateral rim mesh, adjusted for potential confounders, for acetabular revision for any reason was 0.50 (95% CI 0.13 to 1.93; p = 0.31) and for acetabular revision for aseptic loosening was 0.29 (95% CI 0.020 to 4.04; p = 0.35). The Kaplan–Meier analysis showed a ten-year survival for aseptic loosening of the acetabular of 98% (95% CI 95 to 100, n = 65 at risk) in the mesh group and 94% (89 to 98, n = 76 at risk) in the no-mesh group. The 15-year survival for aseptic acetabular loosening was 90% (81 to 100, n = 35 at risk) in the mesh group and 85% (77 to 94, n = 45 at risk) in the no-mesh group (p = 0.23). Conclusion. This study shows that the use of a lateral rim mesh in primary THA in young patients is not associated with a higher risk of revision of the acetabular component. Therefore, we consider a lateral rim mesh combined with IBG to be effective in reconstructing segmental acetabular defects in primary THA


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1499 - 1454
1 Nov 2018
Green CM Buckley SC Hamer AJ Kerry RM Harrison TP

Aims. The management of acetabular defects at the time of revision hip arthroplasty surgery is a challenge. This study presents the results of a long-term follow-up study of the use of irradiated allograft bone in acetabular reconstruction. Patients and Methods. Between 1990 and 2000, 123 hips in 110 patients underwent acetabular reconstruction for aseptic loosening, using impaction bone grafting with frozen, irradiated, and morsellized femoral heads and a cemented acetabular component. A total of 55 men and 55 women with a mean age of 64.3 years (26 to 97) at the time of revision surgery are included in this study. Results. At a mean follow-up of 16.9 years, there had been 23 revisions (18.7%), including ten for infection, eight for aseptic loosening, and three for dislocation. Of the 66 surviving hips (58 patients) that could be reassessed, 50 hips (42 patients; 75.6%) were still functioning satisfactorily. Union of the graft had occurred in all hips with a surviving implant. Survival analysis for all indications was 80.6% at 15 years (55 patients at risk, 95% confidence interval (CI) 71.1 to 87.2) and 73.7% at 20 years (eight patients at risk, 95% CI 61.6 to 82.5). Conclusion. Acetabular reconstruction using frozen, irradiated, and morsellized allograft bone and a cemented acetabular component is an effective method of treatment. It gives satisfactory long-term results and is comparable to other types of reconstruction. Cite this article: Bone Joint J 2018;100-B:1449–54


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 725 - 732
1 Jun 2018
Gibon E Barut N Courpied J Hamadouche M

Aims. The purpose of this retrospective study was to evaluate the minimum five-year outcome of revision total hip arthroplasty (THA) using the Kerboull acetabular reinforcement device (KARD) in patients with Paprosky type III acetabular defects and destruction of the inferior margin of the acetabulum. Patients and Methods. We identified 36 patients (37 hips) who underwent revision THA under these circumstances using the KARD, fresh frozen allograft femoral heads, and reconstruction of the inferior margin of the acetabulum. The Merle d’Aubigné system was used for clinical assessment. Serial anteroposterior pelvic radiographs were used to assess migration of the acetabular component. Results. At a mean follow-up of 8.2 years (5 to 19.3), the mean Merle d’Aubigné score increased from 12.5 (5 to 18) preoperatively to 16.5 (10 to 18) (p < 0.0001). The survival rate at ten years was 95.3% (. sd. 4.5; 95% confidence interval (CI) 86.4 to 100) and 76.5% (. sd. 9.9, 95% CI 57.0 to 95.9) using aseptic loosening and radiological loosening as the endpoints, respectively. Conclusion. These results show that the use of the KARD with reconstruction of the inferior margin of the acetabulum in revision THA is associated with acceptable clinical results and survival at mid-term follow-up with, however, a high rate of migration of the acetabular component of 21.6%. Cite this article: Bone Joint J 2018;100-B:725–32


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 68 - 76
1 Jun 2019
Jones CW Choi DS Sun P Chiu Y Lipman JD Lyman S Bostrom MPG Sculco PK

Aims. Custom flange acetabular components (CFACs) are a patient-specific option for addressing large acetabular defects at revision total hip arthroplasty (THA), but patient and implant characteristics that affect survivorship remain unknown. This study aimed to identify patient and design factors related to survivorship. Patients and Methods. A retrospective review of 91 patients who underwent revision THA using 96 CFACs was undertaken, comparing features between radiologically failed and successful cases. Patient characteristics (demographic, clinical, and radiological) and implant features (design characteristics and intraoperative features) were collected. There were 74 women and 22 men; their mean age was 62 years (31 to 85). The mean follow-up was 24.9 months (. sd. 27.6; 0 to 116). Two sets of statistical analyses were performed: 1) univariate analyses (Pearson’s chi-squared and independent-samples Student’s t-tests) for each feature; and 2) bivariable logistic regressions using features identified from a random forest analysis. Results. Radiological failure and revision rates were 23% and 12.5%, respectively. Revisions were undertaken at a mean of 25.1 months (. sd. 26.4) postoperatively. Patients with radiological failure were younger at the time of the initial procedure, were less likely to have a diagnosis of primary osteoarthritis (OA), were more likely to have had ischial screws in previous surgery, had fewer ischial screw holes in their CFAC design, and had more proximal ischial fixation. Random forest analysis identified the age of the patient and the number of locking and non-locking screws used for inclusion in subsequent bivariable logistic regression, but only age (odds ratio 0.93 per year) was found to be significant. Conclusion. We identified both patient and design features predictive of CFAC survivorship. We found a higher rate of failure in younger patients, those whose primary diagnosis was not OA, and those with more proximal ischial fixation or fewer ischial fixation options. Cite this article: Bone Joint J 2019;101-B(6 Supple B):68–76